1
|
King JE, Pape MM, Keenan J, Zhang D. Evaluation of Saccadic Component Measure on Smooth Pursuit Tests. Mil Med 2024:usae422. [PMID: 39276314 DOI: 10.1093/milmed/usae422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
INTRODUCTION Despite the advancement of eye-tracking technology for smooth pursuit (SP) eye movement evaluation, qualitative observation offers much information that is not captured by computers; hence, both objective and qualitative information should be utilized to evaluate SP. This study examined the consistency among our clinicians when evaluating SP using normal (N), grossly normal (GN), mildly abnormal (MA), and abnormal (AB) as classifications. We then evaluated the effect of combining GN and MA into a single subclinical (SUBC) category. We also evaluated the computerized percent saccade (PS) metric by determining its sensitivity and specificity in classifying SP. MATERIALS AND METHODS Retrospective horizontal and vertical SP test videos and numerical data for 70 participants were obtained from the Neuro Kinetics Neuro-Otologic Test Center and de-identified. From this, eye-tracking videos, time plots of eye-tracking positional data, and tables of SP eye-tracking performance data were generated for 0.1, 0.3, and 0.5 Hz in both horizontal and vertical planes, totaling 6 tests per subject. Three clinicians rated each subject's SP performance as N, GN, MA, or AB for a total of 6 ratings (3 frequencies, horizontal and vertical). This process was repeated using N, SUBC, and AB as rating categories. Clinicians also provided an overall SP rating for each plane as follows: AB if the results were abnormal for 2 or more frequencies tested. Alternatively, if fewer than 2 frequencies presented with a rating of AB, then an overall rating of MA, GN, or N was determined at the respective clinician's discretion. RESULTS When the 3 clinicians were tasked with classifying SP videos using 4 clinical categories, fair overall agreement was demonstrated. However, when MA and GN categories were combined into an SUBC category, the overall agreement for the 3 clinicians improved slightly for both horizontal SP (HSP) and vertical SP (VSP). This pattern of agreement did not differ considerably when comparing HSP versus VSP, and good consistency and reliability was observed across clinicians. Again, inter-rater consistency was smaller for VSP versus HSP despite the reduction in clinical categories. Cut-off values were generated for the PS metric and demonstrated good specificity and sensitivity when they were exceeded for 2 or more frequencies in a particular plane when evaluating a subject's SP test. CONCLUSIONS
Collapse
Affiliation(s)
- John E King
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Marcy M Pape
- Clinical Operations, National Intrepid Center of Excellence, Bethesda, MD 20889, USA
| | - Justin Keenan
- University Undergraduate Core, Saint Louis University, Saint Louis, MO 63108, USA
| | - Dong Zhang
- Mathematics and Digital Sciences, Commonwealth University, Bloomsburg, PA 17815, USA
| |
Collapse
|
2
|
Taore A, Tiang M, Dakin SC. (The limits of) eye-tracking with iPads. J Vis 2024; 24:1. [PMID: 38953861 PMCID: PMC11223623 DOI: 10.1167/jov.24.7.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/22/2024] [Indexed: 07/04/2024] Open
Abstract
Applications for eye-tracking-particularly in the clinic-are limited by a reliance on dedicated hardware. Here we compare eye-tracking implemented on an Apple iPad Pro 11" (third generation)-using the device's infrared head-tracking and front-facing camera-with a Tobii 4c infrared eye-tracker. We estimated gaze location using both systems while 28 observers performed a variety of tasks. For estimating fixation, gaze position estimates from the iPad were less accurate and precise than the Tobii (mean absolute error of 3.2° ± 2.0° compared with 0.75° ± 0.43°), but fixation stability estimates were correlated across devices (r = 0.44, p < 0.05). For tasks eliciting saccades >1.5°, estimated saccade counts (r = 0.4-0.73, all p < 0.05) were moderately correlated across devices. For tasks eliciting saccades >8° we observed moderate correlations in estimated saccade speed and amplitude (r = 0.4-0.53, all p < 0.05). We did, however, note considerable variation in the vertical component of estimated smooth pursuit speed from the iPad and a catastrophic failure of tracking on the iPad in 5% to 20% of observers (depending on the test). Our findings sound a note of caution to researchers seeking to use iPads for eye-tracking and emphasize the need to properly examine their eye-tracking data to remove artifacts and outliers.
Collapse
Affiliation(s)
- Aryaman Taore
- School of Optometry & Vision Science, The University of Auckland, Auckland, New Zealand
| | - Michelle Tiang
- School of Optometry & Vision Science, The University of Auckland, Auckland, New Zealand
| | - Steven C Dakin
- School of Optometry & Vision Science, The University of Auckland, Auckland, New Zealand
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Treleaven D, Lamontagne A, Grilli L, Friedman D, Gagnon I. Altered Oculomotor and Vestibulo-ocular Function in Children and Adolescents Postconcussion. J Head Trauma Rehabil 2024; 39:E237-E246. [PMID: 37862137 DOI: 10.1097/htr.0000000000000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
OBJECTIVE To document (1) oculomotor (OM) and vestibulo-ocular (VO) function in children with concussion who were symptomatic at the time of assessment and to compare it with that in children with concussion who were clinically recovered (asymptomatic) and in children with no concussive injury, and (2) the extent to which OM and VO function relates to postconcussion symptom severity in injured children. SETTING Participants were recruited from a concussion clinic or the community. PARTICIPANTS A total of 108 youth with concussion (72 symptomatic; 36 recovered) and 79 healthy youth (aged 9-18 years). Youth with concussion were included if aged 9 to 18 years, had no previous concussion within the last 12 months, less than 90 days since injury, and no known existing visual disorders or learning disabilities. STUDY DESIGN A prospective cross-sectional study. MAIN MEASURES All participants were tested for OM and VO function with a commercial virtual reality (VR) eye-tracking system (Neuroflex ® , Montreal,Québec, Canada). Participants in the concussion group who completed the postconcussion symptoms were scored with the Post-Concussion Symptom Inventory. RESULTS There was a significant group effect for vergence during smooth pursuit ( F2,176 = 10.90; P < .05), mean latency during saccades ( F2,171 = 5.99; P = .003), and mean response delay during antisaccades ( F2,177 = 9.07; P < .05), where children with symptomatic concussion showed poorer performance than clinically recovered and healthy children. Similar results were found in VO for average vestibular ocular reflex gain in the horizontal leftward ( F2,168 = 7; P = .001) and rightward directions ( F2,163 = 13.08; P < .05) and vertical upward ( F2,147 = 7.60; P = .001) and downward directions ( F2,144 = 13.70; P < .05). Mean saccade error was positively correlated to total Post-Concussion Symptom Inventory scores in younger clinically recovered children. CONCLUSION VR eye tracking may be an effective tool for identifying OM and VO deficits in the subacute phase (<90 days) postconcussion.
Collapse
Affiliation(s)
- Dakota Treleaven
- Author Affiliations: Integrated Program in Neuroscience, Faculty of Medicine and Health Sciences, McGill University, Montreal, Québec, Canada (Ms Treleaven); School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Québec, Canada (Dr Lamontagne); Jewish Rehabilitation Hospital-CISSS Laval site, Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain (CRIR), Montréal, Québec, Canada (Dr Lamontagne); Montreal Children's Hospital, McGill University Health Centre, Montreal, Québec, Canada (Mss Grilli and Friedman); and School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, Trauma Center, Montreal Children's Hospital, McGill University Health Center, Montreal, Québec, Canada (Dr Gagnon)
| | | | | | | | | |
Collapse
|
4
|
Cade A, Turnbull PRK. Classification of short and long term mild traumatic brain injury using computerized eye tracking. Sci Rep 2024; 14:12686. [PMID: 38830966 PMCID: PMC11148176 DOI: 10.1038/s41598-024-63540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Accurate, and objective diagnosis of brain injury remains challenging. This study evaluated useability and reliability of computerized eye-tracker assessments (CEAs) designed to assess oculomotor function, visual attention/processing, and selective attention in recent mild traumatic brain injury (mTBI), persistent post-concussion syndrome (PPCS), and controls. Tests included egocentric localisation, fixation-stability, smooth-pursuit, saccades, Stroop, and the vestibulo-ocular reflex (VOR). Thirty-five healthy adults performed the CEA battery twice to assess useability and test-retest reliability. In separate experiments, CEA data from 55 healthy, 20 mTBI, and 40 PPCS adults were used to train a machine learning model to categorize participants into control, mTBI, or PPCS classes. Intraclass correlation coefficients demonstrated moderate (ICC > .50) to excellent (ICC > .98) reliability (p < .05) and satisfactory CEA compliance. Machine learning modelling categorizing participants into groups of control, mTBI, and PPCS performed reasonably (balanced accuracy control: 0.83, mTBI: 0.66, and PPCS: 0.76, AUC-ROC: 0.82). Key outcomes were the VOR (gaze stability), fixation (vertical error), and pursuit (total error, vertical gain, and number of saccades). The CEA battery was reliable and able to differentiate healthy, mTBI, and PPCS patients reasonably well. While promising, the diagnostic model accuracy should be improved with a larger training dataset before use in clinical environments.
Collapse
Affiliation(s)
- Alice Cade
- School of Optometry and Vision Science, The University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand.
- New Zealand College of Chiropractic, Auckland, New Zealand.
| | - Philip R K Turnbull
- School of Optometry and Vision Science, The University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand
| |
Collapse
|
5
|
Cade AE, Turnbull PRK. Effect of Chiropractic Intervention on Oculomotor and Attentional Visual Outcomes in Young Adults With Long-Term Mild Traumatic Brain Injury: A Randomized Controlled Trial. J Manipulative Physiol Ther 2024; 47:1-11. [PMID: 39503641 DOI: 10.1016/j.jmpt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE This study aimed to establish if chiropractic care can improve oculomotor and cognitive symptoms in individuals with persistent postconcussion syndrome (PPCS). METHODS A single-blind, randomized controlled intervention study recorded baseline computerized eye-tracker assessment (CEA) outcomes in 40 young adults with PPCS following mild traumatic brain injury. Participants were randomly allocated to either a chiropractic or age-matched active control intervention, and the change in CEA outcomes following intervention was compared between the chiropractic and control groups. A battery of CEAs including egocentric localization, fixation stability, pursuit, saccades, Stroop, and the vestibulo-ocular reflex, were used to assess oculomotor function, visual attention/processing, and selective attention. RESULTS Relative to the control group, participants receiving the chiropractic intervention scored better in the Stroop test (P < .001), had improved gaze stability during both vestibulo-ocular reflex (P < .001) and fixation stability (P = .009), and a lower vertical error in egocentric localization (P < .001). However, performance was poorer in pursuits, where they had an increased tracking error (P < .001). CONCLUSION Chiropractic care in participants with PPCS significantly improved static and dynamic gaze stability, and performance in the Stroop test, compared with a control intervention. These results suggest that chiropractic care can offer a novel avenue for alleviating certain visual and cognitive symptoms in patients with PPCS. It also adds to the growing evidence that suggests that some longstanding PPCS visual symptoms may have a spinal or proprioceptive basis.
Collapse
Affiliation(s)
- Alice E Cade
- Department Optometry & Vision Science, University of Auckland, Auckland, New Zealand; Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand.
| | - Philip R K Turnbull
- Department Optometry & Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
de Souza DN, Jarmol M, Bell CA, Marini C, Balcer LJ, Galetta SL, Grossman SN. Precision Concussion Management: Approaches to Quantifying Head Injury Severity and Recovery. Brain Sci 2023; 13:1352. [PMID: 37759953 PMCID: PMC10526525 DOI: 10.3390/brainsci13091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Mitigating the substantial public health impact of concussion is a particularly difficult challenge. This is partly because concussion is a highly prevalent condition, and diagnosis is predominantly symptom-based. Much of contemporary concussion management relies on symptom interpretation and accurate reporting by patients. These types of reports may be influenced by a variety of factors for each individual, such as preexisting mental health conditions, headache disorders, and sleep conditions, among other factors. This can all be contributory to non-specific and potentially misleading clinical manifestations in the aftermath of a concussion. This review aimed to conduct an examination of the existing literature on emerging approaches for objectively evaluating potential concussion, as well as to highlight current gaps in understanding where further research is necessary. Objective assessments of visual and ocular motor concussion symptoms, specialized imaging techniques, and tissue-based concentrations of specific biomarkers have all shown promise for specifically characterizing diffuse brain injuries, and will be important to the future of concussion diagnosis and management. The consolidation of these approaches into a comprehensive examination progression will be the next horizon for increased precision in concussion diagnosis and treatment.
Collapse
Affiliation(s)
- Daniel N. de Souza
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Mitchell Jarmol
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Carter A. Bell
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Christina Marini
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
- Department of Population Health, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Steven L. Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Scott N. Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10017, USA; (D.N.d.S.); (M.J.); (C.A.B.); (C.M.); (L.J.B.); (S.L.G.)
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10017, USA
| |
Collapse
|
7
|
Zhang Y, Hu Z, Huo B, Liu Y, Zhao X. Assessment of oculomotor function after prolonged computer use. Heliyon 2023; 9:e19255. [PMID: 37662811 PMCID: PMC10470226 DOI: 10.1016/j.heliyon.2023.e19255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
To analyze the specific effects of prolonged computer use on oculomotor function, we propose an oculomotor function evaluation system to analyze changes in oculomotor movement function by using an eye tracker to record eye movement data when performing gaze, smooth pursuit, and saccade under normal condition, after one hour and one and a half hours of continuous working at a computer. The captured eye movement data is pre-processed, and then data features are calculated and analyzed to understand the specific effects of continuously using the computer on the oculomotor function. The results show that the oculomotor function decreases as we gaze at the computer screen for longer periods, as evidenced by a decrease in the stability of the gaze function, a reduction in the gaze focus, a reduction in the speed of eye saccades, and a decrease in the smooth pursuit function. In short, the oculomotor function worsens after prolonged working at a computer. This paper presents the effects of continuously using the computer quantificationally for the first time. The proposed oculomotor function evaluation system could also be used to assess patients who have a disability in oculomotor function and specific individuals, e.g. pilots.
Collapse
Affiliation(s)
- Yubo Zhang
- Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiquan Hu
- Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Benyan Huo
- Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yanhong Liu
- Electrical and Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Xingang Zhao
- State Key Laboratory of Robotics, Shenyang, China
- Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
8
|
Concussed patients with visually induced dizziness exhibit increased ocular torsion and vertical vergence during optokinetic gaze-stabilization. Sci Rep 2023; 13:3690. [PMID: 36879031 PMCID: PMC9988826 DOI: 10.1038/s41598-023-30668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Visually Induced Dizziness (VID) is a common post-concussion sequalae that remains poorly understood and difficult to quantify. The present study aims to identify biomarkers for VID in the form of gaze-stabilizing eye movements. Nine patients with post-commotio VID and nine age-matched healthy controls were recruited by physiotherapists at a local neurorehabilitation centre. Torsional and vergence eye movements were recorded while participants viewed a series of optokinetic rotations where the central- and peripheral regions moved coherently, incoherently, or semi-randomly. Results showed that vergence and torsional velocities were increased in VID patients, reflecting increased oculomotor gain to visual motion, and that responses correlated with symptom severity. Coherent stimulation produced fastest torsional slow-phases across all participants; when faced with confliction directional information, eye movements tended to follow the direction of the central visual field, albeit at slower velocities than during coherent motion, meaning that while torsion was sensitive to visual content of the entire visual field it expressed directional preference to the central stimulation. In conclusion, post-commotio VID was associated with faster slow-phases during optokinetic gaze-stabilization, with both vergence and torsion being correlated to symptom intensity. As torsional tracking remains inaccessible using commercial eye-trackers, vertical vergence may prove particularly accessible for clinical utility.
Collapse
|
9
|
Hecimovich M, Murphy M, Chivers P, Stock P. Evaluation and Utility of the King-Devick With Integrated Eye Tracking as a Diagnostic Tool for Sport-Related Concussion. Orthop J Sports Med 2022; 10:23259671221142255. [PMID: 36582931 PMCID: PMC9793019 DOI: 10.1177/23259671221142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Eye-tracking technology for detecting eye movements has been gaining increasing attention as a possible assessment and monitoring tool for sport-related concussion (SRC). Purpose To determine the diagnostic accuracy of a rapid number-naming task with eye tracking, the King-Devick Eye Tracking (K-D ET) assessment, in identifying SRC. Study Design Cohort study. Methods One female and 1 male team of United States collegiate rugby-15 players competing during the 2018 season were recruited. Variables assessed were total saccades, saccade velocity, total fixations, fixation duration, fixation polyarea, and test duration. A generalized estimating equation was used to examine group (concussion vs nonconcussion), time (baseline vs postinjury/postseason), and sex-based differences for each outcome measure. In addition, the different components of diagnostic accuracy of the K-D ET were calculated. Results Baseline K-D ET assessment for 49 participants (25 male, 24 female) were assessed at the beginning of the season, with 28 participants who did not sustain a head injury during the season completing the postseason assessments and 6 participants completing a postinjury (suspected concussion) assessment. Significant differences were observed between concussed and nonconcussed groups for total saccades (P = .024), fixation duration (P = .007), and fixation polyarea (P = .030), with differences from baseline to follow-up observed for saccade velocity (P = .018) in both groups. Sex-based differences were noted for total fixations (P = .041), fixation polyarea (P = .036), and completion time (P = .035). No significant Group × Time interactions were noted. The K-D ET test duration indicated high specificity (0.86) but not high sensitivity (0.40). No other variables reported high sensitivity or specificity. Conclusion Other than completion time of the K-D ET test, no K-D ET oculomotor parameter was highly sensitive or specific in the diagnosis of concussion in this study.
Collapse
Affiliation(s)
- Mark Hecimovich
- Department of Athletic Training, 003C Human Performance Center,
University of Northern Iowa, Cedar Falls, Iowa, USA.,Mark Hecimovich, PhD, Department of Athletic Training, 003C
Human Performance Center, University of Northern Iowa, Cedar Falls, IA 50614,
USA ()
| | - Myles Murphy
- Nutrition and Health Innovation Research Institute, School of
Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia,
Australia
| | - Paola Chivers
- Institute for Health Research, The University of Notre Dame
Australia, Fremantle, Western Australia, Australia
| | - Payton Stock
- College of Health Sciences, Des Moines University, Des Moines, Iowa,
USA
| |
Collapse
|
10
|
Symons GF, O’Brien WT, Abel L, Chen Z, Costello DM, O’Brien TJ, Kolbe S, Fielding J, Shultz SR, Clough M. Monitoring the acute and subacute recovery of cognitive ocular motor changes after a sports-related concussion. Cereb Cortex 2022; 33:5276-5288. [PMID: 36300614 DOI: 10.1093/cercor/bhac416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Identifying when recovery from a sports-related concussion (SRC) has occurred remains a challenge in clinical practice. This study investigated the utility of ocular motor (OM) assessment to monitor recovery post-SRC between sexes and compared to common clinical measures. From 139 preseason baseline assessments (i.e. before they sustained an SRC), 18 (12 males, 6 females) consequent SRCs were sustained and the longitudinal follow-ups were collected at 2, 6, and 13 days post-SRC. Participants completed visually guided, antisaccade (AS), and memory-guided saccade tasks requiring a saccade toward, away from, and to a remembered target, respectively. Changes in latency (processing speed), visual–spatial accuracy, and errors were measured. Clinical measures included The Sports Concussion Assessment Tool, King-Devick test, Stroop task, and Digit span. AS latency was significantly longer at 2 days and returned to baseline by 13-days post-SRC in females only (P < 0.001). Symptom numbers recovered from 2 to 6 days and 13 days (P < 0.05). Persistently poorer AS visual–spatial accuracy was identified at 2, 6 and 13 days post-SRC (P < 0.05) in both males and females but with differing trajectories. Clinical measures demonstrated consistent improvement reminiscent of practice effects. OM saccade assessment may have improved utility in tracking recovery compared to conventional measures and between sexes.
Collapse
Affiliation(s)
- Georgia F Symons
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - William T O’Brien
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - Larry Abel
- Department of Optometry and Vision science, The University of Melbourne , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Zhibin Chen
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Daniel M Costello
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Terence J O’Brien
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Scott Kolbe
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| | - Joanne Fielding
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
| | - Sandy R Shultz
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital , Grattan street, Parkville, Victoria (VIC) 3010, Australia
- Department of Nursing, Health and Huan services, Vancouver Island University , 900 Fifth St, Nanaimo, British Columbia (BC), V9R 6S5, Canada
| | - Meaghan Clough
- Monash University Department of Neuroscience, , The Alfred Centre, 99 Commercial Road, Melbourne, Victoria (VIC) 3004, Australia
| |
Collapse
|
11
|
Harris SA, Dempsey AR, Mackie K, King D, Hecimovich M, Murphy MC. Do Sideline Tests of Vestibular and Oculomotor Function Accurately Diagnose Sports-Related Concussion in Adults? A Systematic Review and Meta-analysis. Am J Sports Med 2022; 50:2542-2551. [PMID: 34432554 DOI: 10.1177/03635465211027946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sports-related concussion (SRC) assessment tools are primarily based on subjective assessments of somatic, cognitive, and psychosocial/emotional symptoms. SRC symptoms remain underreported, and objective measures of SRC impairments would be valuable to assist diagnosis. Measurable impairments to vestibular and oculomotor processing have been shown to occur after SRC and may provide valid objective assessments. PURPOSE Determine the diagnostic accuracy of sideline tests of vestibular and oculomotor dysfunction to identify SRC in adults. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS Electronic databases and gray literature were searched from inception until February 12, 2020. Physically active individuals (>16 years of age) who participated in sports were included. The reference standard for SRC was a combination of clinical signs and symptoms (eg, the Sport Concussion Assessment Tool [SCAT]), and index tests included any oculomotor assessment tool. The QUADAS tool was used to assess risk of bias, with the credibility of the evidence being rated according to GRADE. RESULTS A total of 8 studies were included in this review. All included studies used the King-Devick test, with no other measures being identified. Meta-analysis was performed on 4 studies with a summary sensitivity and specificity of 0.77 and 0.82, respectively. The overall credibility of the evidence was rated as very low. CONCLUSION Caution must be taken when interpreting these results given the very low credibility of the evidence, and the true summary sensitivity and specificity may substantially differ from the values calculated within this systematic review. Therefore, we recommend that clinicians using the King-Devick test to diagnose SRC in adults do so in conjunction with other tools such as the SCAT. PROSPERO REGISTRATION CRD42018106632.
Collapse
Affiliation(s)
- Sarah A Harris
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Institute of Health Research, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Alasdair R Dempsey
- Murdoch Applied Sports Science (MASS) Laboratory, Discipline of Exercise Science, College of Science Health Engineering and Education, Murdoch University, Perth, Australia
| | - Katherine Mackie
- Emergency Department, St John of God Murdoch Hospital, Murdoch, Western Australia, Australia
| | - Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand.,School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Mark Hecimovich
- Department of Athletic Training, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - Myles C Murphy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Nursing, Midwifery, Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, Western Australia, Australia.,SportsMed Subiaco, St John of God Health Care, Subiaco, Western Australia, Australia
| |
Collapse
|
12
|
Snegireva N, Derman W, Patricios J, Welman KE. Blink duration is increased in concussed youth athletes: a validity study using eye tracking in male youth and adult athletes of selected contact sports. Physiol Meas 2022; 43. [PMID: 35709708 DOI: 10.1088/1361-6579/ac799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/16/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Diagnosing a sports-related concussion (SRC) remains challenging, and research into diagnostic tools is limited. This study investigated whether selected eye tracking variables would be a valid tool to diagnose and monitor SRC in adult and youth participants in selected contact sports, such as Rugby Union (rugby) and football (soccer). METHODS This prospective cohort study, with 70 concussed and 92 non-concussed adult and youth athletes, assessed the validity of five previously selected eye tracking variables for SRC diagnostics and management. The performance between concussed and age-matched control (non-concussed) athletes, as well as between three successive testing sessions in the concussed athletes were compared. Self-paced saccade count in adult group; blink duration in the memory-guided saccade and sinusoidal smooth pursuit tasks, proportion of antisaccade errors, and gain of diagonal smooth pursuit in the youth group were assessed. RESULTS The youth concussed group had higher blink duration in the fast memory-guided saccades task (p = 0.001, η2 = 0.17) and a tendency for higher blink duration in the sinusoidal smooth pursuit task (p = 0.016, η2 = 0.06) compared to the youth control group. In both tasks the blink duration in the concussed youth group decreased from session 1 to session 2 by 24% and 18%, accordingly, although statistical significance was not reached. The concussed adult group demonstrated a lower number of self-paced saccades compared to controls (p = 0.05, η2 = 0.09), which gradually increased, with the largest difference between session 1 and session 3 (p = 0.02). CONCLUSIONS Blink duration in youth athletes holds promise as a valid metric for concussion diagnostics and monitoring. It is recommended to focus future studies on comparing eye tracking performance within the same concussed athletes over time rather than comparing them to healthy controls.
Collapse
Affiliation(s)
- Nadja Snegireva
- Sports Science, Stellenbosch University Faculty of Medicine and Health Sciences, Suidwal Road, Coetzenburg, Cape Town, Western Cape, 7601, SOUTH AFRICA
| | - Wayne Derman
- Institute of Sport and Exercise Medicine, Stellenbosch University Faculty of Medicine and Health Sciences, Francie Van Zijl Dr, Parow, Cape Town, Western Cape, 7505, SOUTH AFRICA
| | - Jon Patricios
- Wits Institute for Sport and Health, University of the Witwatersrand Faculty of Health Sciences, 27 St Andrews Rd, Parktown, Johannesburg, Gauteng, 2193, SOUTH AFRICA
| | - Karen Estelle Welman
- Sports Science, Stellenbosch University Faculty of Medicine and Health Sciences, Suidwal Road, Coetzenburg, Cape Town, Western Cape, 7601, SOUTH AFRICA
| |
Collapse
|
13
|
McDonald MA, Holdsworth SJ, Danesh-Meyer HV. Eye Movements in Mild Traumatic Brain Injury: Ocular Biomarkers. J Eye Mov Res 2022; 15:10.16910/jemr.15.2.4. [PMID: 36439911 PMCID: PMC9682364 DOI: 10.16910/jemr.15.2.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Mild traumatic brain injury (mTBI, or concussion), results from direct and indirect trauma to the head (i.e. a closed injury of transmitted forces), with or without loss of consciousness. The current method of diagnosis is largely based on symptom assessment and clinical history. There is an urgent need to identify an objective biomarker which can not only detect injury, but inform prognosis and recovery. Ocular motor impairment is argued to be ubiquitous across mTBI subtypes and may serve as a valuable clinical biomarker with the recent advent of more affordable and portable eye tracking technology. Many groups have positively correlated the degree of ocular motor impairment to symptom severity with a minority attempting to validate these findings with diffusion tract imaging and functional MRI. However, numerous methodological issues limit the interpretation of results, preventing any singular ocular biomarker from prevailing. This review will comprehensively describe the anatomical susceptibility, clinical measurement, and current eye tracking literature surrounding saccades, smooth pursuit, vestibulo-ocular reflex, vergence, pupillary light reflex, and accommodation in mTBI.
Collapse
Affiliation(s)
- Matthew A McDonald
- Department of Ophthalmology, University of Auckland, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging, University of Auckland, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Helen V Danesh-Meyer
- Department of Ophthalmology, University of Auckland, New Zealand
- Eye Institute, Auckland, New Zealand
| |
Collapse
|
14
|
Rauchman SH, Albert J, Pinkhasov A, Reiss AB. Mild-to-Moderate Traumatic Brain Injury: A Review with Focus on the Visual System. Neurol Int 2022; 14:453-470. [PMID: 35736619 PMCID: PMC9227114 DOI: 10.3390/neurolint14020038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major global public health problem. Neurological damage from TBI may be mild, moderate, or severe and occurs both immediately at the time of impact (primary injury) and continues to evolve afterwards (secondary injury). In mild (m)TBI, common symptoms are headaches, dizziness and fatigue. Visual impairment is especially prevalent. Insomnia, attentional deficits and memory problems often occur. Neuroimaging methods for the management of TBI include computed tomography and magnetic resonance imaging. The location and the extent of injuries determine the motor and/or sensory deficits that result. Parietal lobe damage can lead to deficits in sensorimotor function, memory, and attention span. The processing of visual information may be disrupted, with consequences such as poor hand-eye coordination and balance. TBI may cause lesions in the occipital or parietal lobe that leave the TBI patient with incomplete homonymous hemianopia. Overall, TBI can interfere with everyday life by compromising the ability to work, sleep, drive, read, communicate and perform numerous activities previously taken for granted. Treatment and rehabilitation options available to TBI sufferers are inadequate and there is a pressing need for new ways to help these patients to optimize their functioning and maintain productivity and participation in life activities, family and community.
Collapse
Affiliation(s)
- Steven H. Rauchman
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA
- Correspondence:
| | - Jacqueline Albert
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Allison B. Reiss
- Department of Medicine, Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (J.A.); (A.B.R.)
| |
Collapse
|
15
|
Hunfalvay M, Murray NP, Creel WT, Carrick FR. Long-Term Effects of Low-Level Blast Exposure and High-Caliber Weapons Use in Military Special Operators. Brain Sci 2022; 12:679. [PMID: 35625065 PMCID: PMC9140026 DOI: 10.3390/brainsci12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic low-level blast exposure has been linked with neurological alterations and traumatic brain injury (TBI) biomarkers. Impaired smooth-pursuit eye movements (SPEM) are often associated with TBI. The purpose of this study was to determine whether long-term operators of low-level blast exposure or high-caliber weapons use displayed oculomotor behaviors that differed from controls. Twenty-six members of an elite military unit performed a computerized oculomotor testing task using an eye tracker and completed a concussion assessment questionnaire. The participants were split into a blast exposure group and control group. The blast exposure group had a history of exposure to low-level blasts or high-caliber weapon use. The results revealed significant differences in SPEM, saccades, and fixations between the blast exposure group and control group. The blast exposure group's eye movements were slower, stopped at more frequent points when following a target, traveled further from the target in terms of both speed and direction, and showed higher rates of variation and inefficiency. Poor oculomotor behavior correlated with a higher symptom severity on the concussion assessment questionnaire. Military special operators exposed to long-term low-level blasts or high-caliber weapons usage displayed an impaired oculomotor behavior in comparison to controls. These findings further our understanding of the impact of long-term low-level blast exposure on the oculomotor behavior of military special operators and may inform practical implications for military training.
Collapse
Affiliation(s)
- Melissa Hunfalvay
- RightEye LLC, 7979 Old Georgetown Rd, Suite 801, Bethesda, MD 20814, USA
| | - Nicholas P. Murray
- Department of Kinesiology, East Carolina University, Minges Coliseum 166, Greensville, NC 27858, USA;
| | - William T. Creel
- Neurology Department, Adler University, 17 N Dearborn St, Chicago, IL 60602, USA;
| | - Frederick R. Carrick
- Neurology Department, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge CB2 1TN, UK
- Department of Health Professions Education, MGH Institute for Health Professions, Boston, MA 02129, USA
| |
Collapse
|
16
|
Hecimovich M, King D, Murphy M, Koyama K. An investigation into the measurement properties of the King-Devick Eye Tracking system. JOURNAL OF CONCUSSION 2022. [DOI: 10.1177/20597002221082865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Eye tracking has been gaining increasing attention as a possible assessment and monitoring tool for concussion. The King-Devick test (K-DT) was expanded to include an infrared video-oculography-based eye tracker (K-D ET). Therefore, the aim was to provide evidence on the reliability of the K-D ET system under an exercise condition. Methods Participants (N = 61; 26 male, 35 female; age range 19-25) were allocated to an exercise or sedentary group. Both groups completed a baseline K-D ET measurement and then either two 10-min exercise or sedentary interventions with repeated K-D ET measurements between interventions. Results The test-retest reliability of the K-D ET ranged from good to excellent for the different variables measured. The mean ± SD of the differences for the total number of saccades was 1.04 ± 4.01 and there was an observable difference (p = 0.005) in the trial number. There were no observable differences for the intervention (p = 0.768), gender (p = 0.121) and trial (p = 0.777) for average saccade’s velocity. The mean ± SD of the difference of the total fixations before and after intervention across both trials was 1.04 ± 3.63 and there was an observable difference in the trial number (p = 0.025). The mean ± SD of the differences for the Inter-Saccadic Interval and the fixation polyarea before and after intervention across both trials were 1.86 ± 22.99 msec and 0.51 ± 59.11 mm2 and no observable differences for the intervention, gender and trial. Conclusion The results provide evidence on the reliability of the K-D ET, and the eye-tracking components and demonstrate the relationship between completion time and other variables of the K-D ET system. This is vital as the use of the K-DT may be increasing and the combination of the K-DT and eye tracking as one single package highlights the need to specifically measure the reliability of this combined unit.
Collapse
Affiliation(s)
- M. Hecimovich
- Division of Athletic Training, University of Northern Iowa, Cedar Falls, Iowa, USA
| | - D. King
- Sports Performance Research Institute New Zealand (SPRINZ) at AUT Millennium, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
- Traumatic Brain injury Network (TBIN), Auckland University of Technology, Auckland, New Zealand
- Department of Science and Technology, University of New England, Sydney, Australia
| | - M. Murphy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- SportsMed Subiaco, St John of God Health Care, Subiaco, Western Australia, Australia
| | - K. Koyama
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
17
|
Cade A, Turnbull PR. Clinical testing of mild traumatic brain injury using computerised eye-tracking tests. Clin Exp Optom 2022; 105:680-686. [PMID: 35021960 DOI: 10.1080/08164622.2021.2018915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Traumatic brain injury (TBI) refers to the alteration of typical brain function that occurs following a blow to the head. Even a mild case of traumatic brain injury (mTBI) can lead to long-term impairment, so accurate and timely detection is vital. Visual symptoms are common following mTBI, so while it may seem to fall outside their typical scope of practice, optometrists are ideally qualified to assess the visual impacts and help with the diagnosis of mTBI. Given that mTBI is challenging to objectively diagnose and has no universally accepted diagnostic criteria, clinicians can lack confidence in diagnosing mTBI, and be hesitant in becoming involved in the management of such patients. The development of easily quantifiable techniques using eye tracking as an objective diagnostic tool provides practitioners with an easier pathway into the field, assigning numerical values to parameters which are difficult to assess using conventional optometric tests. As this evolving technology becomes increasingly integrated into optometric clinical settings, the potential for it to identify deficits accurately and reliably in patients following mTBI, and to monitor both their recovery and the effectiveness of potential treatments will increase. This paper provides an overview of clinical tests, relevant to optometrists, that can uncover oculomotor, attentional, and exteroceptive deficits following a mTBI, so that an optometrist with an interest in eye tracking can play a role in the detection and monitoring of mTBI symptoms.
Collapse
Affiliation(s)
- Alice Cade
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Philip Rk Turnbull
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Kiefer AW, Armitano-Lago CN, Sathyan A, MacPherson R, Cohen K, Silva PL. The Intelligent Phenotypic Plasticity Platform (IP 3) for Precision Medicine-Based Injury Prevention in Sport. Methods Mol Biol 2022; 2393:877-903. [PMID: 34837217 PMCID: PMC9100860 DOI: 10.1007/978-1-0716-1803-5_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The best predictor of future injury is previous injury and this has not changed in a quarter century despite the introduction of evidence-based medicine and associated revisions to post-injury treatment and care. Nearly nine million sports-related injuries occur annually, and the majority of these require medical intervention prior to clearance for the athlete to return to play (RTP). Regardless of formal care, these athletes remain two to four times more likely to suffer a second injury for several years after RTP. In the case of children and young adults, this sets them up for a lifetime of negative health outcomes. Thus, the initial injury is the tipping point for a post-injury cascade of negative sequelae exposing athletes to more physical and psychological pain, higher medical costs, and greater risk of severe long-term negative health throughout their life. This chapter details the technologies and method that make up the automated Intelligent Phenotypic Plasticity Platform (IP3)-a revolutionary new approach to the current standard of post-injury care that identifies and targets deficits that underly second injury risk in sport. IP3 capitalizes on the biological concept of phenotypic plasticity (PP) to quantify an athlete's functional adaptability across different performance environments, and it is implemented in two distinct steps: (1) phenomic profiling and (2) precision treatment. Phenomic profiling indexes the fitness and subsequent phenotypic plasticity of an individual athlete, which drives the personalization of the precision treatment step. IP3 leverages mixed-reality technologies to present true-to-life environments that test the athlete's ability to adapt to dynamic stressors. The athlete's phenotypic plasticity profile is then used to drive a precision treatment that systematically stresses the athlete, via a combination of behavioral-based and genetic fuzzy system models, to optimally enhance the athlete's functional adaptability. IP3 is computationally light-weight and, through the integration with mixed-reality technologies, promotes real-time prediction, responsiveness, and adaptation. It is also the first ever phenotypic plasticity-based precision medicine platform, and the first precision sports medicine platform of any kind.
Collapse
Affiliation(s)
- Adam W Kiefer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cortney N Armitano-Lago
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anoop Sathyan
- Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Ryan MacPherson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly Cohen
- Department of Aerospace Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Paula L Silva
- Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
19
|
Hunfalvay M, Murray NP, Mani R, Carrick FR. Smooth Pursuit Eye Movements as a Biomarker for Mild Concussion within 7-Days of Injury. Brain Inj 2021; 35:1682-1689. [PMID: 34894915 DOI: 10.1080/02699052.2021.2012825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM Deficits in smooth-pursuit eye movements (SPEM) are often associated with mild traumatic brain injury(TBI). Eye tracking tests serve as a quick objective clinical tool to assess such predictive visual tracking. In this study, SPEM was assessed along circular, horizontal and vertical trajectories in adolescents with concussion and age-matched controls. METHODS Ninety-one young adolescents with concussion and 140 visually healthy age-matched controls with a mean age of 14 years performed a computerized test of circular, horizontal and vertical tracking task using an eye tracker. Oculomotor tracking was assessed by computing the rate of fixation, saccades and SPEM made while performing the tasks. RESULTS The predictive visual tracking task was able to differentiate the TBI group from the non-TBI group. The TBI group showed a significant difference in the fixation, saccades and SPEM percentages for circular tracking movement compared to the controls. There was a significant difference in fixation and SPEM % for horizontal and vertical tracking. CONCLUSIONS Predictive visual tracking, assessed using eye tracking technology, is able to differentiate deficits in oculomotor functions in individuals with and without concussion. The eye tracking technology may serve as a quick objective tool to detect and monitor neural deficits due to TBI.
Collapse
Affiliation(s)
| | - Nicholas P Murray
- Department of Kinesiology, East Carolina University, North Carolina, USA
| | - Revathy Mani
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Frederick Robert Carrick
- Department of Neurology, University of Central Florida College of Medicine, Orlando, FL, USA, Centre for Mental Health Research in association with University of Cambridge, Cambridge UK, MGH Institute for Health Professions, Boston, MA, USA
| |
Collapse
|
20
|
Lirani-Silva E, Stuart S, Parrington L, Campbell K, King L. Saccade and Fixation Eye Movements During Walking in People With Mild Traumatic Brain Injury. Front Bioeng Biotechnol 2021; 9:701712. [PMID: 34805104 PMCID: PMC8602343 DOI: 10.3389/fbioe.2021.701712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Clinical and laboratory assessment of people with mild traumatic brain injury (mTBI) indicate impairments in eye movements. These tests are typically done in a static, seated position. Recently, the use of mobile eye-tracking systems has been proposed to quantify subtle deficits in eye movements and visual sampling during different tasks. However, the impact of mTBI on eye movements during functional tasks such as walking remains unknown. Objective: Evaluate differences in eye-tracking measures collected during gait between healthy controls (HC) and patients in the sub-acute stages of mTBI recovery and to determine if there are associations between eye-tracking measures and gait speed. Methods: Thirty-seven HC participants and 67individuals with mTBI were instructed to walk back and forth over 10-m, at a comfortable self-selected speed. A single 1-min trial was performed. Eye-tracking measures were recorded using a mobile eye-tracking system (head-mounted infra-red Tobbii Pro Glasses 2, 100 Hz, Tobii Technology Inc. VA, United States). Eye-tracking measures included saccadic (frequency, mean and peak velocity, duration and distance) and fixation measurements (frequency and duration). Gait was assessed using six inertial sensors (both feet, sternum, right wrist, lumbar vertebrae and the forehead) and gait velocity was selected as the primary outcome. General linear model was used to compare the groups and association between gait and eye-tracking outcomes were explored using partial correlations. Results: Individuals with mTBI showed significantly reduced saccade frequency (p = 0.016), duration (p = 0.028) and peak velocity (p = 0.032) compared to the HC group. No significant differences between groups were observed for the saccade distance, fixation measures and gait velocity (p > 0.05). A positive correlation was observed between saccade duration and gait velocity only for participants with mTBI (p = 0.025). Conclusion: Findings suggest impaired saccadic eye movement, but not fixations, during walking in individuals with mTBI. These findings have implications in real-world function including return to sport for athletes and return to duty for military service members. Future research should investigate whether or not saccade outcomes are influenced by the time after the trauma and rehabilitation.
Collapse
Affiliation(s)
- Ellen Lirani-Silva
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom.,Northumbria Healthcare NHS Foundation Trust, North Shields, United Kingdom
| | - Lucy Parrington
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| | - Kody Campbell
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| | - Laurie King
- Balance Disorders Laboratory, Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Veterans Affairs Portland Oregon Health Care System, Portland, OR, United States
| |
Collapse
|
21
|
Eye tracking to assess concussions: an intra-rater reliability study with healthy youth and adult athletes of selected contact and collision team sports. Exp Brain Res 2021; 239:3289-3302. [PMID: 34467416 DOI: 10.1007/s00221-021-06205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Eye movements that are dependent on cognition hold promise in assessing sports-related concussions but research on reliability of eye tracking measurements in athletic cohorts is very limited. This observational test-retest study aimed to establish whether eye tracking technology is a reliable tool for assessing sports-related concussions in youth and adult athletes partaking in contact and collision team sports. Forty-three youth (15.4 ± 2.2 years) and 27 adult (22.2 ± 2.9 years) Rugby Union and soccer players completed the study. Eye movements were recorded using SMIRED250mobile while participants completed a test battery twice, with a 1-week interval that included self-paced saccade (SPS), fixation stability, memory-guided sequence (MGS), smooth pursuit (SP), and antisaccades (AS) tasks. Intra-class correlation coefficient (ICC), measurement error (SEM) and smallest real difference (SRD) were calculated for 47 variables. Seventeen variables achieved an ICC > 0.50. In the adults, saccade count in SPS had good reliability (ICC = 0.86, SRD = 146.6 saccades). In the youth, the average blink duration in MGS had excellent reliability (ICC = 0.99, SRD = 59.4 ms); directional errors in AS tasks and gain of diagonal SP had good reliability (ICC = 0.78 and 0.77, SRD = 25.3 and 395.1%, respectively). Four metrics were found in this study to be reliable candidates for further biomarker validity research in contact and collision sport cohorts. Many variables failed to present a sufficient level of robustness for a practical diagnostic tool; possibly, because athletic cohorts have higher homogeneity, along with latent adverse effects of undetected concussions and repetitive head impacts. Since reliability of a measure can influence type II error, effect sizes, and confidence intervals, it is strongly advocated to conduct dedicated reliability evaluations prior to any validity studies.
Collapse
|
22
|
Iverson GL, Cook NE, Howell DR, Collings LJ, Kusch C, Sun J, Virji-Babul N, Panenka WJ. Preseason Vestibular Ocular Motor Screening in Children and Adolescents. Clin J Sport Med 2021; 31:e188-e192. [PMID: 31233433 DOI: 10.1097/jsm.0000000000000767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The primary purpose of this study was to examine vestibular/ocular motor screening (VOMS) test performance in a sample of healthy youth ice hockey players. A particular focus was to investigate the potential effects of age and pre-existing health conditions, including concussion history, attention-deficit/hyperactivity disorder (ADHD), learning disability (LD), headaches/migraines, and depression/anxiety on preseason baseline VOMS performance, including the near point of convergence (NPC) distance. DESIGN Cross-sectional cohort. SETTING Outpatient physiotherapy clinic. PARTICIPANTS Three hundred eighty-seven male youth hockey players, with an average age of 11.9 years (SD = 2.2, range = 8-17), completed the VOMS and responded to self- or parent-reported demographic and medical history questionnaires during preseason baseline assessments. INDEPENDENT VARIABLES ASSESSED Age, sex, and mental and physical health history including ADHD, headaches, depression, anxiety, migraine, and LD. OUTCOME MEASURE Vestibular/ocular motor screening. RESULTS The large majority of boys scored within normal limits on the VOMS, ie, they reported no symptom provocation of more than 2 points on any VOMS subset (89%) and had a normal NPC distance, ie, <5 cm (78%). The individual VOMS subtests had low abnormality rates, and demographic and pre-existing health conditions, such as age, headache or migraine history, previous neurodevelopmental conditions, or mental health problems, were not associated with clinically meaningful symptom provocation during the VOMS. CONCLUSIONS There was a low rate of abnormal findings for the individual VOMS subtests, with the exception of NPC distance, among male youth hockey players during preseason assessment.
Collapse
Affiliation(s)
- Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital and Spaulding Rehabilitation Institute, Charlestown, Massachusetts
- MassGeneral Hospital for Children Sport Concussion Program, Boston, Massachusetts
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, Massachusetts
| | - Nathan E Cook
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
- Spaulding Rehabilitation Hospital and Spaulding Rehabilitation Institute, Charlestown, Massachusetts
- MassGeneral Hospital for Children Sport Concussion Program, Boston, Massachusetts
| | - David R Howell
- Department of Orthopedics, University of Colorado School of Medicine, Sports Medicine Center, Children's Hospital Colorado, Aurora, Colorado
| | - Laurel J Collings
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Cody Kusch
- Seafair Minor Hockey Association, Richmond, BC, Canada
| | | | - Naznin Virji-Babul
- British Columbia Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, Canada ; and
| | - William J Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Mental Health and Addictions Research Institute, Vancouver, BC, Canada
- British Columbia Provincial Neuropsychiatry Program, Vancouver Coastal Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Yaramothu C, Morris CJ, d'Antonio-Bertagnolli JV, Alvarez TL. OculoMotor Assessment Tool Test Procedure and Normative Data. Optom Vis Sci 2021; 98:636-643. [PMID: 34039908 PMCID: PMC8205981 DOI: 10.1097/opx.0000000000001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE This study establishes normative data and a testing procedure for the oculomotor assessment tool. The oculomotor assessment tool standardizes visual targets for the Vestibular/OculoMotor Screening assessment and provides additional metrics that may aid in the differentiation between those with normal and those with abnormal oculomotor function potentially caused by a concussion. PURPOSE This study aimed to assess the oculomotor endurance of healthy participants with no self-reported history of concussions using the oculomotor assessment tool. METHODS Healthy participants (n = 376, average age of 20.4 years, range of 11 to 34 years, with no self-reported history of concussions) were recruited to perform the following three tasks for 60 seconds each: (1) horizontal saccades, (2) vertical saccades, and (3) vergence jumps. The participants were instructed to alternate visual fixation between two targets for each of the tasks as fast as they could without overshooting or undershooting the visual target. The differences in the number of eye movements between the initial and latter 30 seconds of the 1-minute test were analyzed. RESULTS A statistical difference (P < .001) was observed in the number of eye movements for all three tasks (horizontal saccades [70 ± 15 for initial 30 seconds, 63 ± 13 for latter 30 seconds], vertical saccades [68 ± 14, 63 ± 13], and vergence jumps [43 ± 11, 39 ± 10]) between the initial and latter 30 seconds. No significant differences were identified in the number of eye movements or the change in eye movements between the initial and latter 30 seconds based on sex. CONCLUSIONS These results establish a normative database for various eye movements. These data could potentially be used to compare different patient populations who have binocular endurance dysfunctions potentially due to traumatic brain injury, such as patients with concussion(s).
Collapse
Affiliation(s)
| | - Christopher J Morris
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | | | | |
Collapse
|
24
|
Campbell KR, Parrington L, Peterka RJ, Martini DN, Hullar TE, Horak FB, Chesnutt JC, Fino PC, King LA. Exploring persistent complaints of imbalance after mTBI: Oculomotor, peripheral vestibular and central sensory integration function. J Vestib Res 2021; 31:519-530. [PMID: 34024798 DOI: 10.3233/ves-201590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Little is known on the peripheral and central sensory contributions to persistent dizziness and imbalance following mild traumatic brain injury (mTBI). OBJECTIVE To identify peripheral vestibular, central integrative, and oculomotor causes for chronic symptoms following mTBI. METHODS Individuals with chronic mTBI symptoms and healthy controls (HC) completed a battery of oculomotor, peripheral vestibular and instrumented posturography evaluations and rated subjective symptoms on validated questionnaires. We defined abnormal oculomotor, peripheral vestibular, and central sensory integration for balance measures among mTBI participants as falling outside a 10-percentile cutoff determined from HC data. A X-squared test associated the proportion of normal and abnormal responses in each group. Partial Spearman's rank correlations evaluated the relationships between chronic symptoms and measures of oculomotor, peripheral vestibular, and central function for balance control. RESULTS The mTBI group (n = 58) had more abnormal measures of central sensory integration for balance than the HC (n = 61) group (mTBI: 41% -61%; HC: 10%, p's < 0.001), but no differences on oculomotor and peripheral vestibular function (p > 0.113). Symptom severities were negatively correlated with central sensory integration for balance scores (p's < 0.048). CONCLUSIONS Ongoing balance complaints in people with chronic mTBI are explained more by central sensory integration dysfunction rather than peripheral vestibular or oculomotor dysfunction.
Collapse
Affiliation(s)
- Kody R Campbell
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Robert J Peterka
- National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Douglas N Martini
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Timothy E Hullar
- National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Fay B Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - James C Chesnutt
- Departments of Family Medicine, Neurology, and Orthopedics & Rehabilitation, Oregon Health and Science University, Portland, OR, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - Laurie A King
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
25
|
Crampton A, Teel E, Chevignard M, Gagnon I. Vestibular-ocular reflex dysfunction following mild traumatic brain injury: A narrative review. Neurochirurgie 2021; 67:231-237. [PMID: 33482235 DOI: 10.1016/j.neuchi.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
Mild traumatic brain injury (mTBI) is a prevalent injury which occurs across many populations, including children and adolescents, athletes, military personnel, and the elderly. mTBI can result in various subjective symptoms and clinical deficits, such as abnormalities to the vestibulo-ocular reflex (VOR). Over 50% of individuals with mTBI are reported to have VOR abnormalities, which strongly contribute to feelings of dizziness and unsteadiness. Dizziness is a strong predictor for prolonged recovery following mTBI and is additionally linked with mental health difficulties and functional limitations affecting likelihood of return to work. Early diagnosis, and subsequent treatment, of VOR deficits following mTBI may greatly improve recovery outcomes and a patient's quality of life, but a thorough comprehension of the related pathophysiology is necessary to understand the assessments used to diagnose VOR abnormalities. Therefore, the purpose of this article is i) provide readers with an introduction on the VOR physiology to facilitate understanding about mTBI-related abnormalities, and ii) to discuss current assessments that are commonly used to measure VOR function following mTBI. As the VOR and oculomotor (OM) systems are heavily linked and often work in tandem, discussion of the relevant aspects of the OM system is also provided.
Collapse
Affiliation(s)
- Adrienne Crampton
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada.
| | - Elizabeth Teel
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada
| | - Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, INSERM, CNRS, Paris, France; GRC 24 HaMCRe, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| | - Isabelle Gagnon
- School of Physical and Occupational Therapy, McGill University, Montréal, QC, Canada; Montreal Children Hospital, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
26
|
Hunfalvay M, Murray NP, Carrick FR. Fixation stability as a biomarker for differentiating mild traumatic brain injury from age matched controls in pediatrics. Brain Inj 2020; 35:209-214. [PMID: 33356610 DOI: 10.1080/02699052.2020.1865566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Traumatic brain injury (TBI) is an increasingly significant health concern worldwide, compounded by the difficultly in detection and diagnosis. Fortunately, a growing body of research has identified oculomotor behavior, specifically fixations, saccades and smooth pursuit eye movements as a promising endophenotype for neurotrauma. To date, limited research exists using fixation stability in a comparative study to indicate the presence of a mild TBI (mTBI), especially in the pediatric population. METHODS The present study examined data from 91 individuals clinically diagnosed with mTBI and a further 140 age- and gender-matched controls. They all completed the RightEye fixation stability test using a remote eye tracker. Participants were compared on five fixation metrics: Bivariate Contour Ellipse Area (BCEA), Convergence Point, Depth, Disassociated Phoria, and Targeting Displacement. RESULTS Results were analyzed using one-way univariate ANOVAs, ROC analysis, and stepwise logistic regression. BCEA results revealed significant differences between groups with the mTBI group showing a larger gaze spread, indicative of less ability to keep the eyes close to the target without deviating. CONCLUSIONS Fixation stability is detrimentally impacted by mTBI in pediatric patients, and the oculomotor test can be used to differentiate between those with and without an mTBI.
Collapse
Affiliation(s)
| | - Nicholas P Murray
- Department of Kinesiology, East Carolina University, Greensville, NC, USA
| | - Frederick Robert Carrick
- Centre for Mental Health Research in Association, University of Cambridge, Cambridge, UK.,University of Central Florida College of Medicine, Orlando, FL, USA.,MGH Institute of Health Professions, Boston, MA, USA
| |
Collapse
|
27
|
Hunfalvay M, Murray NP, Roberts CM, Tyagi A, Barclay KW, Carrick FR. Oculomotor Behavior as a Biomarker for Differentiating Pediatric Patients With Mild Traumatic Brain Injury and Age Matched Controls. Front Behav Neurosci 2020; 14:581819. [PMID: 33281574 PMCID: PMC7690212 DOI: 10.3389/fnbeh.2020.581819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE Children have the highest incidence of mild traumatic brain injury (mTBI) in the United States. However, mTBI, specifically pediatric patients with mTBI, are notoriously difficult to detect, and with a reliance on traditional, subjective measurements of eye movements, the subtle but key oculomotor deficits are often missed. OBJECTIVE The purpose of this project is to determine if the combined measurement of saccades, smooth pursuit, fixations and reaction time represent a biomarker for differentiating pediatric patients with mild traumatic brain injury compared to age matched controls. DESIGN This study used cross-sectional design. Each participant took part in a suite of tests collectively labeled the "Brain Health EyeQ" to measure saccades, smooth pursuit, fixations and reaction time. PARTICIPANTS The present study recruited 231 participants - 91 clinically diagnosed with a single incident mTBI in the last 2 days as assessed by both the Glasgow Coma Scale (GCS) and Graded Symptoms Checklist (GSC), and 140 age and gender-matched controls (n = 165 male, n = 66 female, M age = 14.20, SD = 2.78). RESULTS One-way univariate analyses of variance examined the differences in performance on the tests between participants with mTBI and controls. ROC curve analysis examined the sensitivity and specificity of the tests. Results indicated that together, the "Brain Health EyeQ" tests were successfully able to identify participants with mTBI 75.3% of the time, providing further validation to a growing body of literature supporting the use of eye tracking technology for mTBI identification and diagnosis.
Collapse
Affiliation(s)
| | - Nicholas P. Murray
- Department of Kinesiology, East Carolina University, Greensville, NC, United States
| | - Claire-Marie Roberts
- Health and Social Sciences, University of the West of England, Bristol, United Kingdom
| | | | | | - Frederick Robert Carrick
- Centre for Mental Health Research in association with University of Cambridge, Cambridge, United Kingdom
- College of Medicine, University of Central Florida, Orlando, FL, United States
- MGH Institute of Health Professions, Boston, MA, United States
| |
Collapse
|
28
|
Oculomotor, Vestibular, and Reaction Time Effects of Sports-Related Concussion: Video-Oculography in Assessing Sports-Related Concussion. J Head Trauma Rehabil 2020; 34:176-188. [PMID: 30234848 PMCID: PMC6553977 DOI: 10.1097/htr.0000000000000437] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective: The purpose of the study was to test the ability of oculomotor, vestibular, and reaction time (OVRT) metrics to serve as a concussion assessment or diagnostic tool for general clinical use. Setting and Participants: Patients with concussion were high school-aged athletes clinically diagnosed in a hospital setting with a sports-related concussion (n = 50). Control subjects were previously recruited male and female high school student athletes from 3 local high schools (n = 170). Design: Video-oculography was used to acquire eye movement metrics during OVRT tasks, combined with other measures. Measures were compared between groups, and a subset was incorporated into linear regression models that could serve as indicators of concussion. Measures: The OVRT test battery included multiple metrics of saccades, smooth pursuit tracking, nystagmoid movements, vestibular function, and reaction time latencies. Results: Some OVRT metrics were significantly different between groups. Linear regression models distinguished control subjects from concussion subjects with high accuracy. Metrics included changes in smooth pursuit tracking, increased reaction time and reduced saccade velocity in a complex motor task, and decreased optokinetic nystagmus (OKN) gain. In addition, optokinetic gain was reduced and more variable in subjects assessed 22 or more days after injury. Conclusion: These results indicate that OVRT tests can be used as a reliable adjunctive tool in the assessment of concussion and that OKN results appear to be associated with a prolonged expression of concussion symptoms.
Collapse
|
29
|
Stuart S, Parrington L, Martini D, Peterka R, Chesnutt J, King L. The Measurement of Eye Movements in Mild Traumatic Brain Injury: A Structured Review of an Emerging Area. Front Sports Act Living 2020; 2:5. [PMID: 33345000 PMCID: PMC7739790 DOI: 10.3389/fspor.2020.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, occurs following a direct or indirect force to the head that causes a change in brain function. Many neurological signs and symptoms of mTBI can be subtle and transient, and some can persist beyond the usual recovery timeframe, such as balance, cognitive or sensory disturbance that may pre-dispose to further injury in the future. There is currently no accepted definition or diagnostic criteria for mTBI and therefore no single assessment has been developed or accepted as being able to identify those with an mTBI. Eye-movement assessment may be useful, as specific eye-movements and their metrics can be attributed to specific brain regions or functions, and eye-movement involves a multitude of brain regions. Recently, research has focused on quantitative eye-movement assessments using eye-tracking technology for diagnosis and monitoring symptoms of an mTBI. However, the approaches taken to objectively measure eye-movements varies with respect to instrumentation, protocols and recognition of factors that may influence results, such as cognitive function or basic visual function. This review aimed to examine previous work that has measured eye-movements within those with mTBI to inform the development of robust or standardized testing protocols. Medline/PubMed, CINAHL, PsychInfo and Scopus databases were searched. Twenty-two articles met inclusion/exclusion criteria and were reviewed, which examined saccades, smooth pursuits, fixations and nystagmus in mTBI compared to controls. Current methodologies for data collection, analysis and interpretation from eye-tracking technology in individuals following an mTBI are discussed. In brief, a wide range of eye-movement instruments and outcome measures were reported, but validity and reliability of devices and metrics were insufficiently reported across studies. Interpretation of outcomes was complicated by poor study reporting of demographics, mTBI-related features (e.g., time since injury), and few studies considered the influence that cognitive or visual functions may have on eye-movements. The reviewed evidence suggests that eye-movements are impaired in mTBI, but future research is required to accurately and robustly establish findings. Standardization and reporting of eye-movement instruments, data collection procedures, processing algorithms and analysis methods are required. Recommendations also include comprehensive reporting of demographics, mTBI-related features, and confounding variables.
Collapse
Affiliation(s)
- Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Lucy Parrington
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Douglas Martini
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Robert Peterka
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
- National Center for Rehabilitative Auditory Research, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - James Chesnutt
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Department of Family Medicine, Oregon Health & Science University, Portland, OR, United States
- Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Laurie King
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
30
|
Development and validation of a high-speed video system for measuring saccadic eye movement. Behav Res Methods 2020; 51:2302-2309. [PMID: 30706347 DOI: 10.3758/s13428-019-01197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laboratory-based retroreflective and magnetic scleral search-coil technologies are the current standards for collecting saccadometric data, but such equipment is costly and cumbersome. We have validated a novel, portable, high-speed video camera-based system (Exilim EX-FH20, Casio, Tokyo, Japan) for measuring saccade reaction time (RT) and error rate in a well-lit environment. This system would enable measurements of pro- and antisaccades in athletes, which is important because antisaccade metrics provide a valid tool for concussion diagnosis and determining an athlete's safe return to play. A total of 529 trials collected from 15 participants were used to compare saccade RT and error rate measurements of the high-speed camera system to a retroreflective video-based eye tracker (Eye-Trac 6: Applied Sciences Laboratories, Bedford, MA). Bland-Altman analysis revealed that the RT measurements made by the high-speed video system were 11 ms slower than those made by the retroreflective system. Error rate measurements were identical between the two systems. An excellent degree of reliability was found between the system measurements and in the ratings of independent researchers examining the video data. A strong association (r = .97) between the RTs determined via the retroreflective and high-speed camera systems was observed across all trials. Our high-speed camera system is portable and easily set up, does not require extensive equipment calibration, and can be used in a well-lit environment. Accordingly, the camera-based capture of saccadometric data may provide a valuable tool for neurological assessment following a concussive event and for the continued monitoring of recovery.
Collapse
|
31
|
Murray NG, Szekely B, Islas A, Munkasy B, Gore R, Berryhill M, Reed-Jones RJ. Smooth Pursuit and Saccades after Sport-Related Concussion. J Neurotrauma 2020; 37:340-346. [PMID: 31524054 PMCID: PMC7059002 DOI: 10.1089/neu.2019.6595] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Smooth pursuit eye movements (SPEMs) and saccadic eye movements are both commonly impaired following sport-related concussion (SRC). Typical oculomotor assessments measure individual eye movements in a series of restrictive tests designed to isolate features such as response times. These measures lack ecological validity for athletes because athletes are adept at simple tasks designed for the general population. Yet, because eye movement metrics are sensitive and well-characterized neuroanatomically, it would be valuable to test whether athletes exhibit abnormal eye movements with more challenging tasks. To address this gap in knowledge, we collected eye-tracking data during a sport-like task to gain insight on gaze behavior during active self-motion. SPEMs and saccadic eye movements were recorded during a sport-like visual task within 24-48 h following SRC. Thirty-six Division I student-athletes were divided into SRC and control (CON) groups. All participants completed two blocks of the Wii Fit© soccer heading game (WF) while wearing a monocular infrared eye tracker. Eye movement classification systems quantified saccadic amplitude (SA), velocity (SV), and count (SC); as well as SPEM velocity (SPV) and amplitude (SPA). Separate Mann-Whitney U tests evaluated SPA and SC and found no significant effects (SPA, p = 0.11; SC, p = 0.10). A multi-variate analysis of variance (MANOVA) for remaining variables revealed SPV was significantly greater in CON (p < 0.05), but the SRC group had greater SA and SV (p < 0.05). These findings suggest that during a sport-like task, to maintain foveation SRC subjects used larger amplitude, faster saccades, but exhibited slower SPEMs. Measuring oculomotor function during ecologically valid, sport-like tasks may serve as a concussion biomarker and provide insights into eye movement control after SRC.
Collapse
Affiliation(s)
- Nicholas G. Murray
- School of Community Health Sciences, University of Nevada, Reno, Nevada
- Neuromechanics Laboratory, University of Nevada, Reno, Nevada
| | - Brian Szekely
- Neuromechanics Laboratory, University of Nevada, Reno, Nevada
- Psychology Department, University of Nevada, Reno, Nevada
| | - Arthur Islas
- School of Medicine, University of Nevada, Reno, Nevada
| | - Barry Munkasy
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, Georgia
| | - Russell Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Complex Concussion Clinic, Shepherd Center, Atlanta, Georgia
| | - Marian Berryhill
- Programs in Cognitive and Brain Sciences and Neuroscience, Psychology Department, University of Nevada, Reno, Nevada
| | - Rebecca J. Reed-Jones
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
32
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
Hunfalvay M, Roberts CM, Murray N, Tyagi A, Kelly H, Bolte T. Horizontal and vertical self-paced saccades as a diagnostic marker of traumatic brain injury. Concussion 2019; 4:CNC60. [PMID: 31467684 PMCID: PMC6714073 DOI: 10.2217/cnc-2019-0001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Eye tracking tests to measure horizontal and vertical saccades as a proxy for neural deficits associated with traumatic brain injury (TBI) were evaluated in the present study. Methodology: A total of 287 participants reporting either no TBI, mild, moderate or severe TBI participated in a suite of eye tracking tests to measure horizontal and vertical saccadic performance. Results: The horizontal saccades test offered a sensitivity of 0.77 and a specificity of 0.78, similarly the vertical saccades tests offered a sensitivity of 0.64 and a specificity of 0.65. Conclusion: The results indicated that using eye-tracking technology to measure these metrics offers an objective, reliable and quantifiable way of differentiating between individuals with different severities of TBI, and those without a TBI.
Collapse
Affiliation(s)
- Melissa Hunfalvay
- RightEye LLC, 7979 Old Georgetown Rd, Suite 801, Bethesda, MD 20814, USA
| | - Claire-Marie Roberts
- University of the West of England, Department of Psychology, Bristol, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Nick Murray
- East Carolina University, College of Health & Human Performance, Minges Coliseum 166, Greenville, NC 27858, USA
| | - Ankur Tyagi
- RightEye LLC, 7979 Old Georgetown Rd, Suite 801, Bethesda, MD 20814, USA
| | - Hannah Kelly
- Emory University, Health Sciences, 201 Dowman Dr, Atlanta, GA 30322, USA
| | - Takumi Bolte
- RightEye LLC, 7979 Old Georgetown Rd, Suite 801, Bethesda, MD 20814, USA
| |
Collapse
|
34
|
Yaramothu C, Greenspan LD, Scheiman M, Alvarez TL. Vergence Endurance Test: A Pilot Study for a Concussion Biomarker. J Neurotrauma 2019; 36:2200-2212. [PMID: 30829134 PMCID: PMC6653808 DOI: 10.1089/neu.2018.6075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Vergence Endurance Test (VET), a quantitative and objective eye movement assessment, was utilized to differentiate control from concussed subjects. Nine symptomatic concussed (2 male; 30.8 ± 11 years) and 9 asymptomatic control (6 male; 25.1 ± 1.4 years) subjects participated in the VET. Symmetrical disparity vergence step targets were presented with and without visual distractors. A masked data analyst measured vergence latency, peak velocity, response amplitude, settling time, and the percentage of trials which contained blinks. A Binocular Precision Index (BPI) and a Binocular Accuracy Index (BAI) were calculated to quantify the changes that occur in the vergence parameters over the duration of the VET. Convergence and divergence peak velocity, divergence response amplitude, the percentage of trials that contained blinks during the transient portion of the response, and the BAI were significantly (p < 0.05) different between the concussed and the control subjects. For these parameters, the BAI and divergence response amplitude yielded the greatest accuracy, 78%, in their ability to discriminate between the groups. The VET objectively measures the change in vergence performance over time and shows promise as a method to diagnose a concussion. Future studies will determine whether the VET can be used to assess the extent of natural recovery and the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- Chang Yaramothu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | - Lynn D. Greenspan
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Mitchell Scheiman
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Tara L. Alvarez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
35
|
Stuart S, Parrington L, Martini D, Popa B, Fino PC, King LA. Validation of a velocity-based algorithm to quantify saccades during walking and turning in mild traumatic brain injury and healthy controls. Physiol Meas 2019; 40:044006. [PMID: 30943463 PMCID: PMC7608620 DOI: 10.1088/1361-6579/ab159d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Saccadic (fast) eye movements are a routine aspect of neurological examination and are a potential biomarker of mild traumatic brain injury (mTBI). Objective measurement of saccades has become a prominent focus of mTBI research, as eye movements may be a useful assessment tool for deficits in neural structures or processes. However, saccadic measurement within mobile infra-red (IR) eye-tracker raw data requires a valid algorithm. The objective of this study was to validate a velocity-based algorithm for saccade detection in IR eye-tracking raw data during walking (straight ahead and while turning) in people with mTBI and healthy controls. APPROACH Eye-tracking via a mobile IR Tobii Pro Glasses 2 eye-tracker (100 Hz) was performed in people with mTBI (n = 10) and healthy controls (n = 10). Participants completed two walking tasks: straight walking (walking back and forth for 1 min over a 10 m distance), and walking and turning (turns course included 45°, 90° and 135° turns). Five trials per subject, for one-hundred total trials, were completed. A previously reported velocity-based saccade detection algorithm was adapted and validated by assessing agreement between algorithm saccade detections and the number of correct saccade detections determined from manual video inspection (ground truth reference). MAIN RESULTS Compared with video inspection, the IR algorithm detected ~97% (n = 4888) and ~95% (n = 3699) of saccades made by people with mTBI and controls, respectively, with excellent agreement to the ground truth (intra-class correlation coefficient2,1 = .979 to .999). SIGNIFICANCE This study provides a simple yet highly robust algorithm for the processing of mobile eye-tracker raw data in mTBI and controls. Future studies may consider validating this algorithm with other IR eye-trackers and populations.
Collapse
Affiliation(s)
- Samuel Stuart
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America. Veterans Affairs Portland Health Care System, Portland, OR, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
36
|
Snegireva N, Derman W, Patricios J, Welman KE. Eye tracking technology in sports-related concussion: a systematic review and meta-analysis. Physiol Meas 2018; 39:12TR01. [DOI: 10.1088/1361-6579/aaef44] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Mani R, Asper L, Khuu SK. Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: a systematic review and meta-analysis. Brain Inj 2018; 32:1315-1336. [PMID: 29913089 DOI: 10.1080/02699052.2018.1483030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE To conduct a review of literature and quantify the effect that traumatic brain injury (TBI) has on oculomotor functions (OM). METHODS A systematic review and meta-analysis was conducted from papers that objectively measured saccades and smooth-pursuit eye movements in mild and severe TBI. RESULTS The overall impact of TBI on OM functions was moderate and significant with an effect size of 0.42 from 181 OM case-control comparisons. The heterogeneity, determined using the random effect model, was found to be significant (Q (180) = 367, p < 0.0001, I2 = 51) owing to the variety of OM functions (reflexive saccades, antisaccades, memory-guided saccades, self-paced saccades and pursuits) measured and varying post-injury periods.The overall effect on OM functions were similar in mild and severe TBI despite differences in combined effect size of various OM functions. OM functions involving complex cognitive skills such as antisaccades (in mild and severe TBI) and memory-guided saccades (in mild TBI) were the most adversely affected, suggesting that OM deficits may be associated with cognitive deficits in TBI. CONCLUSION TBI often results in long-standing OM deficits. Experimental measures of OM assessment reflect neural integrity and may provide a sensitive and objective biomarker to detect OM deficits following TBI.
Collapse
Affiliation(s)
- Revathy Mani
- a School of Optometry and Vision Science , The University of New South Wales (UNSW) , Sydney , Australia
| | - Lisa Asper
- a School of Optometry and Vision Science , The University of New South Wales (UNSW) , Sydney , Australia
| | - Sieu K Khuu
- a School of Optometry and Vision Science , The University of New South Wales (UNSW) , Sydney , Australia
| |
Collapse
|
38
|
Cercenelli L, Tiberi G, Corazza I, Giannaccare G, Fresina M, Marcelli E. SacLab: A toolbox for saccade analysis to increase usability of eye tracking systems in clinical ophthalmology practice. Comput Biol Med 2016; 80:45-55. [PMID: 27893991 DOI: 10.1016/j.compbiomed.2016.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Many open source software packages have been recently developed to expand the usability of eye tracking systems to study oculomotor behavior, but none of these is specifically designed to encompass all the main functions required for creating eye tracking tests and for providing the automatic analysis of saccadic eye movements. The aim of this study is to introduce SacLab, an intuitive, freely-available MATLAB toolbox based on Graphical User Interfaces (GUIs) that we have developed to increase the usability of the ViewPoint EyeTracker (Arrington Research, Scottsdale, AZ, USA) in clinical ophthalmology practice. METHODS SacLab consists of four processing modules that enable the user to easily create visual stimuli tests (Test Designer), record saccadic eye movements (Data Recorder), analyze the recorded data to automatically extract saccadic parameters of clinical interest (Data Analyzer) and provide an aggregate analysis from multiple eye movements recordings (Saccade Analyzer), without requiring any programming effort by the user. RESULTS A demo application of SacLab to carry out eye tracking tests for the analysis of horizontal saccades was reported. We tested the usability of SacLab toolbox with three ophthalmologists who had no programming experience; the ophthalmologists were briefly trained in the use of SacLab GUIs and were asked to perform the demo application. The toolbox gained an enthusiastic feedback from all the clinicians in terms of intuitiveness, ease of use and flexibility. Test creation and data processing were accomplished in 52±21s and 46±19s, respectively, using the SacLab GUIs. CONCLUSIONS SacLab may represent a useful tool to ease the application of the ViewPoint EyeTracker system in clinical routine in ophthalmology.
Collapse
|