1
|
Iqbal A, Skulason E, Abghoui Y. Electrochemical Nitrogen Reduction to Ammonia at Ambient Condition on the (111) Facets of Transition Metal Carbonitrides. Chemphyschem 2024; 25:e202300991. [PMID: 38568155 DOI: 10.1002/cphc.202300991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/21/2024] [Indexed: 05/15/2024]
Abstract
We conducted Density Functional Theory calculations to investigate a class of materials with the goal of enabling nitrogen activation and electrochemical ammonia production under ambient conditions. The source of protons at the anode could originate from either water splitting or H2, but our specific focus was on the cathode reaction, where nitrogen is reduced into ammonia. We examined the conventional associative mechanism, dissociative mechanism, and Mars-van Krevelen mechanism on the (111) facets of the NaCl-type structure found in early transition metal carbonitrides, including Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, Sc, Y, and W. We explored the catalytic activity by calculating the free energy of all intermediates along the reaction pathway and constructing free energy diagrams to identify the steps that determine the reaction's feasibility. Additionally, we closely examined the potential for catalyst poisoning within the electrochemical environment, considering the bias required to drive the reaction. Furthermore, we assessed the likelihood of catalyst decomposition and the potential for catalyst regeneration among the most intriguing carbonitrides. Our findings revealed that the only carbonitride catalyst considered here exhibiting both activity and stability, capable of self-regeneration and nitrogen-to-ammonia activation, is NbCN with a low potential-determining step energy of 0.58 eV. This material can facilitate ammonia formation via a mixed associative-MvK mechanism. In contrast, other carbonitrides of this crystallographic orientation are likely to undergo decomposition, reverting to their parent metals under operational conditions.
Collapse
Affiliation(s)
- Atef Iqbal
- Science Institute of the University of Iceland
| | - Egill Skulason
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland
| | | |
Collapse
|
2
|
Ghoshal S, Ghosh A, Roy P, Ball B, Pramanik A, Sarkar P. Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N 2 Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Biswajit Ball
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia723 104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| |
Collapse
|
3
|
Liu A, Yang Y, Ren X, Zhao Q, Gao M, Guan W, Meng F, Gao L, Yang Q, Liang X, Ma T. Current Progress of Electrocatalysts for Ammonia Synthesis Through Electrochemical Nitrogen Reduction Under Ambient Conditions. CHEMSUSCHEM 2020; 13:3766-3788. [PMID: 32302057 DOI: 10.1002/cssc.202000487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Ammonia, one of the most important chemicals and carbon-free energy carriers, is mainly produced by the traditional Haber-Bosch process operated at high pressure and temperature, which results in massive energy consumption and CO2 emissions. Alternatively, the electrocatalytic nitrogen reduction reaction to synthesize NH3 under ambient conditions using renewable energy has recently attracted significant attention. However, the competing hydrogen evolution reaction (HER) significantly reduces the faradaic efficiency and NH3 production rate. The design of high-performance electrocatalysts with the suppression of the HER for N2 reduction to NH3 under ambient conditions is a crucial consideration for the development of electrocatalytic NH3 synthesis with high FE and NH3 production rate. Five kinds of recently developed electrocatalysts classified by their chemical compositions are summarized, with particular emphasis on the relationship between their optimal electrocatalytic conditions and NH3 production performance. Conclusions and perspectives are provided for the future design of high-performance electrocatalysts for electrocatalytic NH3 production. The Review can give practical guidance for the design of effective electrocatalysts with high FE and NH3 production rates.
Collapse
Affiliation(s)
- Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Yanan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Xuefeng Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Qidong Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Mengfan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Weixin Guan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Fanning Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Liguo Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Qiyue Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Xingyou Liang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, P.R. China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P.R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0196, Japan
| |
Collapse
|
4
|
Qing G, Ghazfar R, Jackowski ST, Habibzadeh F, Ashtiani MM, Chen CP, Smith MR, Hamann TW. Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia. Chem Rev 2020; 120:5437-5516. [DOI: 10.1021/acs.chemrev.9b00659] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Geletu Qing
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Reza Ghazfar
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Shane T. Jackowski
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Faezeh Habibzadeh
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mona Maleka Ashtiani
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Chuan-Pin Chen
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Milton R. Smith
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Thomas W. Hamann
- Department of Chemistry, Michigan State University 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
John J, Lee DK, Sim U. Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. NANO CONVERGENCE 2019; 6:15. [PMID: 31025218 PMCID: PMC6484042 DOI: 10.1186/s40580-019-0182-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/18/2019] [Indexed: 05/15/2023]
Abstract
Ammonia production is essential for sustaining the demand for providing food for the growing population. Being a great source of hydrogen, it has significant potential in turning out to be a viable candidate for the future hydrogen economy. Ammonia has a high hydrogen content of about 17.6 wt %, is easier to liquefy and is produced in large quantities. Even though large-scale production of ammonia is significant globally, it is used predominantly as a fertilizer. It used also as a transport fuel for vehicles because of its low carbon emissions. Ammonia as an energy storage media is realized in many countries with infrastructure for transportation and distribution already put into place. Currently, the Haber-Bosch process is employed globally in industrial ammonia production and is a high energy expending process requiring large capital investment. In realizing a much economic pathway given the large-scale ammonia production growth forecast, it is necessary to seek new and improved methods for large-scale ammonia production. Amongst them, photoelectrochemical and electrochemical approaches stand as most promising towards nitrogen reduction to ammonia owing to their design features, lesser complexity, and economical in terms of the conventional ammonia production system. Several catalyst materials are investigated which include metal oxides, metals sulfides, carbon-based catalysts, and metal nitrides are all currently being pursued better utilization of their catalytic property towards nitrogen fixation and the minimization of the competing hydrogen evolution reaction (HER). In this article, we have summarized the design and reaction mechanisms for photoelectrochemical and electrochemical nitrogen fixation with the inherent challenges and material- related issues in realizing the Nitrogen Reduction Reaction (NRR).
Collapse
Affiliation(s)
- Jude John
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Dong-Kyu Lee
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
6
|
Guo W, Zhang K, Liang Z, Zou R, Xu Q. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev 2019; 48:5658-5716. [DOI: 10.1039/c9cs00159j] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Design and synthesis of advanced nanomaterials towards electrocatalytic nitrogen reduction and transformation are concluded from both structural and compositional aspects.
Collapse
Affiliation(s)
- Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Kexin Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)
- National Institute of Advanced Industrial Science and Technology (AIST)
- Kyoto 606-8501
- Japan
- School of Chemistry & Chemical Engineering
| |
Collapse
|
7
|
Matanovic I, Garzon FH. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study. Phys Chem Chem Phys 2018; 20:14679-14687. [DOI: 10.1039/c8cp01643g] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The (111) surface of cubic MoC was found to be active for nitrogen electroreduction to ammonia via an associative Heyrovsky path.
Collapse
Affiliation(s)
- Ivana Matanovic
- Chemical and Biological Engineering Department
- Center for Micro-Engineered Materials
- University of New Mexico
- Albuquerque
- USA
| | - Fernando H. Garzon
- Chemical and Biological Engineering Department
- Center for Micro-Engineered Materials
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
8
|
Abghoui Y, Skúlason E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.06.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.11.047] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E. Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01918] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Younes Abghoui
- Science
Institute and Faculty of Physical Sciences, VR-III, University of Iceland, IS-107 Reykjavik, Iceland
| | - Anna L. Garden
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jakob G. Howalt
- Department
of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department
of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Egill Skúlason
- Science
Institute and Faculty of Physical Sciences, VR-III, University of Iceland, IS-107 Reykjavik, Iceland
| |
Collapse
|
11
|
Behm RJ. Electrocatalysis on the nm scale. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1008-1009. [PMID: 25977871 PMCID: PMC4419656 DOI: 10.3762/bjnano.6.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Affiliation(s)
- R Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| |
Collapse
|
12
|
Abghoui Y, Skúlasson E. Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.procs.2015.05.433] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Abghoui Y, Garden AL, Hlynsson VF, Björgvinsdóttir S, Ólafsdóttir H, Skúlason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys Chem Chem Phys 2015; 17:4909-18. [DOI: 10.1039/c4cp04838e] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigation of transition metal nitrides reveals extremely promising electrocatalysts for high-yield ammonia production in aqueous electrolytes under ambient conditions.
Collapse
Affiliation(s)
- Younes Abghoui
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| | - Anna L. Garden
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| | - Valtýr Freyr Hlynsson
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| | - Snædís Björgvinsdóttir
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| | - Hrefna Ólafsdóttir
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| | - Egill Skúlason
- Science Institute and Faculty of Physical Sciences
- VR-III
- University of Iceland
- IS-107 Reykjavik
- Iceland
| |
Collapse
|
14
|
Montemore MM, Medlin JW. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00335g] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|