1
|
Winkler R, Brugger-Hatzl M, Porrati F, Kuhness D, Mairhofer T, Seewald LM, Kothleitner G, Huth M, Plank H, Barth S. Pillar Growth by Focused Electron Beam-Induced Deposition Using a Bimetallic Precursor as Model System: High-Energy Fragmentation vs. Low-Energy Decomposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2907. [PMID: 37947751 PMCID: PMC10647607 DOI: 10.3390/nano13212907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | | | - Fabrizio Porrati
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - David Kuhness
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Thomas Mairhofer
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Lukas M. Seewald
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
| | - Gerald Kothleitner
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Michael Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Sven Barth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany (M.H.)
- Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
Magén C, Pablo-Navarro J, De Teresa JM. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. NANOMATERIALS 2021; 11:nano11020402. [PMID: 33557442 PMCID: PMC7914621 DOI: 10.3390/nano11020402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.
Collapse
Affiliation(s)
- César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876-555369; Fax: +34-976-762-776
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Venturi F, Gazzadi GC, Tavabi AH, Rota A, Dunin-Borkowski RE, Frabboni S. Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1040-1049. [PMID: 29719756 PMCID: PMC5905252 DOI: 10.3762/bjnano.9.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The magnetic properties of nanowires (NWs) and square nanorings, which were deposited by focused electron beam induced deposition (FEBID) of a Co carbonyl precursor, are studied using off-axis electron holography (EH), Lorentz transmission electron microscopy (L-TEM) and magnetic force microscopy (MFM). EH shows that NWs deposited using beam energies of 5 and 15 keV have the characteristics of magnetic dipoles, with larger magnetic moments observed for NWs deposited at lower energy. L-TEM is used to image magnetic domain walls in NWs and nanorings and their motion as a function of applied magnetic field. The NWs are found to have almost square hysteresis loops, with coercivities of ca. 10 mT. The nanorings show two different magnetization states: for low values of the applied in-plane field (0.02 T) a horseshoe state is observed using L-TEM, while for higher values of the applied in-plane field (0.3 T) an onion state is observed at remanence using L-TEM and MFM. Our results confirm the suitability of FEBID for nanofabrication of magnetic structures and demonstrate the versatility of TEM techniques for the study and manipulation of magnetic domain walls in nanostructures.
Collapse
Affiliation(s)
- Federico Venturi
- FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, Modena I-41125, Italy
- CNR – Nanoscience Institute, S3 Center, Via G. Campi 213/a, Modena I-41125, Italy
| | - Gian Carlo Gazzadi
- CNR – Nanoscience Institute, S3 Center, Via G. Campi 213/a, Modena I-41125, Italy
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alberto Rota
- Intermech-Mo.Re. Center, University of Modena and Reggio Emilia, Via Vignolese 905/b, Modena I-41125, Italy
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stefano Frabboni
- FIM Department, University of Modena and Reggio Emilia, Via G. Campi 213/a, Modena I-41125, Italy
- CNR – Nanoscience Institute, S3 Center, Via G. Campi 213/a, Modena I-41125, Italy
| |
Collapse
|
5
|
Grillo V, Harvey TR, Venturi F, Pierce JS, Balboni R, Bouchard F, Carlo Gazzadi G, Frabboni S, Tavabi AH, Li ZA, Dunin-Borkowski RE, Boyd RW, McMorran BJ, Karimi E. Observation of nanoscale magnetic fields using twisted electron beams. Nat Commun 2017; 8:689. [PMID: 28947803 PMCID: PMC5613010 DOI: 10.1038/s41467-017-00829-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 11/09/2022] Open
Abstract
Electron waves give an unprecedented enhancement to the field of microscopy by providing higher resolving power compared to their optical counterpart. Further information about a specimen, such as electric and magnetic features, can be revealed in electron microscopy because electrons possess both a magnetic moment and charge. In-plane magnetic structures in materials can be studied experimentally using the effect of the Lorentz force. On the other hand, full mapping of the magnetic field has hitherto remained challenging. Here we measure a nanoscale out-of-plane magnetic field by interfering a highly twisted electron vortex beam with a reference wave. We implement a recently developed holographic technique to manipulate the electron wavefunction, which gives free electrons an additional unbounded quantized magnetic moment along their propagation direction. Our finding demonstrates that full reconstruction of all three components of nanoscale magnetic fields is possible without tilting the specimen. Beyond high resolving power, electron microscopy can be used to study both the electronic and magnetic properties of a sample. Here, Grillo et al. combine electron vortex beams with holographic detection to measure out-of-plane nanoscale magnetic fields.
Collapse
Affiliation(s)
- Vincenzo Grillo
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125, Modena, Italy.,CNR-IMEM Parco Area delle Scienze 37/A, I-43124, Parma, Italy
| | - Tyler R Harvey
- Department of Physics, University of Oregon, Eugene, OR, 97403-1274, USA
| | - Federico Venturi
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125, Modena, Italy.,Dipartimento FIM, Universitá di Modena e Reggio Emilia, Via G. Campi 213/a, I-41125, Modena, Italy
| | - Jordan S Pierce
- Department of Physics, University of Oregon, Eugene, OR, 97403-1274, USA
| | | | - Frédéric Bouchard
- Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, ON, Canada, K1N 6N5
| | - Gian Carlo Gazzadi
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125, Modena, Italy
| | - Stefano Frabboni
- CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125, Modena, Italy.,Dipartimento FIM, Universitá di Modena e Reggio Emilia, Via G. Campi 213/a, I-41125, Modena, Italy
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum, Jülich, 52425, Germany
| | - Zi-An Li
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum, Jülich, 52425, Germany.,Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum, Jülich, 52425, Germany
| | - Robert W Boyd
- Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, ON, Canada, K1N 6N5.,Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.,School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Ebrahim Karimi
- Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, ON, Canada, K1N 6N5. .,Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran.
| |
Collapse
|
6
|
Huth M, Gölzhäuser A. Focused particle beam-induced processing. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1883-5. [PMID: 26665058 PMCID: PMC4660902 DOI: 10.3762/bjnano.6.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Michael Huth
- Goethe Universität, Physikalisches Institut, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
| | - Armin Gölzhäuser
- Universität Bielefeld, Fakultät für Physik, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|