1
|
Li X, Fan Y, Gong H, Wang H, Ji Y, Xu L, Ma C, Shi C. One-pot electrochemical detection of foodborne pathogen based on in situ nucleic acid amplification and wash-free assay. Mikrochim Acta 2024; 191:431. [PMID: 38951263 DOI: 10.1007/s00604-024-06500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.
Collapse
Affiliation(s)
| | | | - Hao Gong
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life SciencesDepartment of Pathogenic Biology, School of Basic MedicineDepartment of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Haoran Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yanli Ji
- Qingdao JianMa Gene Technology Co., Ltd, Qingdao, 266114, People's Republic of China
| | - Longqiang Xu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life SciencesDepartment of Pathogenic Biology, School of Basic MedicineDepartment of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.
- Qingdao JianMa Gene Technology Co., Ltd, Qingdao, 266114, People's Republic of China.
| |
Collapse
|
2
|
Argoubi W, Algethami FK, Raouafi N. Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Adv 2024; 14:8007-8015. [PMID: 38454949 PMCID: PMC10918640 DOI: 10.1039/d3ra08567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Ensuring food security is crucial for public health, and the presence of mycotoxins, produced by fungi in improperly stored processed or unprocessed food, poses a significant threat. This research introduces a novel approach - a disposable aptasensing platform designed for the detection of ochratoxin A (OTA). The platform employs gold-nanostructured screen-printed carbon electrodes functionalized with a ferrocene derivative, serving as an integrated faradaic transducing system, and an anti-OTA aptamer as a bioreceptor site. Detection relies on the ferrocene electrochemical signal changes induced by the aptamer folding in the presence of the target molecule. Remarkably sensitive, the platform detects OTA within the range of 0.5 to 70 ng mL-1 and a detection limit of 11 pg mL-1. This limit is approximately 200 times below the levels stipulated by the European Commission for agricultural commodities. Notably, the sensing device exhibits efficacy in detecting OTA in complex media, such as roasted coffee beans and wine, without the need for sample pretreatment, yielding accurate recoveries. Furthermore, while label-free electrochemical aptasensors have proliferated, this study addresses a gap in understanding the binding mechanisms of some aptasensors. To enhance the experimental findings, a theoretical study was conducted to underscore the specificity of the anti-OTA aptamer as a donor for OTA detection. The molecular docking technique was employed to unveil the key binding region of the aptamer, providing valuable insights into the aptasensor specificity.
Collapse
Affiliation(s)
- Wicem Argoubi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| |
Collapse
|
3
|
Qian J, Liu Y, Cui H, Yang H, Hussain M, Wang K, Wei J, Long L, Ding L, Wang C. Fabrication of a disposable aptasensing chip for simultaneous label-free detection of four common coexisting mycotoxins. Anal Chim Acta 2023; 1282:341921. [PMID: 37923414 DOI: 10.1016/j.aca.2023.341921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Coexisting multiple mycotoxins in food poses severe health risks on humans due to the augmented toxicity. Current multiplex detection methods for mycotoxins have evolved from instrumental analyses to rapid methods based on the specific recognition of antibody/aptamer using different signal transducers. However, nearly all of the reported aptasensors for multiple mycotoxins detection require external labels and can only simultaneous detection of two mycotoxins due to the limitation of distinguishable labels. The tedious labeling process definitely increases the operation complexity and the detection cost. Therefore, rapid method for simultaneous label-free detection of multiple mycotoxins in cereals is urgently needed. RESULTS A disposable aptasensing chip was designed for simultaneous label-free detection of fumonisin B1 (FB1), aflatoxin B1 (AFB1), zearalenone (ZEN), and ochratoxin A (OTA) in one sample. Specifically, ITO conductive glass was divided into a rectangle (35 × 25 mm) and then etched by laser to set aside the required four ITO working electrodes (6 mm in diameter) with respective conductive channels. Gold nanoparticles were electrodeposited on the working electrodes to provide abundant anchoring sites for thiolated aptamers immobilization. On this basis, a disposable aptasensing chip for simultaneous label-free detection of four common coexisting mycotoxins has been developed, which used electrochemical impedance spectroscopy as transducer to measure direct biorecognition of the aptamer and corresponding target. This aptasensing chip provided wide linear ranges of 5-1000, 10-250, 10-1250, 10-1500 ng/mL for FB1, AFB1, ZEN, OTA, respectively, with the respective detection limit of 2.47, 3.19, 5.38, 4.87 ng/mL (S/N = 3). SIGNIFICANCE AND NOVELTY This aptasensing chip shows fantastic characteristics of great simplicity and portability, easy operation, and multiple mycotoxins recognition. They are easy to produce on a large scale at low cost and the design concept can be easily expanded to screen a large panel of coexisting targets. This work provides a new avenue for multi-target detection and represents a substantial advance toward food quality and safety monitoring or other fields.
Collapse
Affiliation(s)
- Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Haining Cui
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiyuan Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Mustafa Hussain
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Baachaoui S, Mabrouk W, Charradi K, Slimi B, Ramadan AM, Elsamra RMI, Alhussein A, Keshk SMAS, Raouafi N. Laser-induced porous graphene electrodes from polyketimine membranes for paracetamol sensing. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230294. [PMID: 37538749 PMCID: PMC10394415 DOI: 10.1098/rsos.230294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
The development of cost-effective materials for fabricating electrodes is crucial for drug, pharmaceutical and environmental applications. This paper presents the synthesis and characterization of a novel polyketimine (PKI) membrane obtained by condensing partially of different weight percentages of oxidized polyvinyl alcohol and aminated polyether sulfone. Using the PKI membrane as a scaffold, we introduced laser-induced graphene electrodes (LIGEs) for the efficient electrochemical sensing of paracetamol (PCM), which serves as a model drug. Electrochemical measurements were conducted to assess the physico-chemical properties, including laser-induced porous graphene features, such as the heterogeneous electron transfer (HET) rate and electrochemically active surface area (ECSA). The obtained results demonstrate that the LIGEs exhibit excellent performance in PCM sensing, showing a linear detection range of 50-600 µM with a detection limit (LOD) as low as 14.3 µM and a good selectivity toward uric acid. Furthermore, the functionalization of the electrode surface with AuNPs improved the electrode physico-chemical properties (HET and ECSA) and lowered the detection limit down to 1.1 µM. Consequently, these affordable electrodes hold great potential for analysing other drugs and detecting heavy metal cations in various applications.
Collapse
Affiliation(s)
- Sabrine Baachaoui
- Faculty of Sciences, Department of Chemistry, University of Tunis El Manar, Campus universitaire de Tunis El Manar, Tunis 2092, Tunisia
| | - Walid Mabrouk
- Laboratory Water, Membranes and Biotechnology of the Environment, Water Research and Technologies Center, Technopark Borj Cedria, Soliman 8020, Tunisia
| | - Khaled Charradi
- Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy, Technopark Borj Cedria, Soliman 8020, Tunisia
| | - Bechir Slimi
- Nanomaterials and Systems for Renewable Energy Laboratory, Research and Technology Center of Energy, Technopark Borj Cedria, Soliman 8020, Tunisia
| | - Ahmed M. Ramadan
- Faculty of Science, Department of Chemistry, Alexandria University, PO Box 426, Alexandria 21321, Egypt
| | - Rehab M. I. Elsamra
- Faculty of Science, Department of Chemistry, Alexandria University, PO Box 426, Alexandria 21321, Egypt
| | - Akram Alhussein
- Technological Pole of South Champagne, University of Technology of Troyes, Lavoisier Rd., Nogent 52800, France
| | - Sherif M. A. S. Keshk
- Become: Technology, Science, AI & Automation Lab, 63 rue de Tolbiac, Paris 75013, France
| | - Noureddine Raouafi
- Faculty of Sciences, Department of Chemistry, University of Tunis El Manar, Campus universitaire de Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
5
|
Ouedraogo B, Baachaoui S, Tall A, Tapsoba I, Raouafi N. Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum. Mikrochim Acta 2023; 190:316. [PMID: 37480385 DOI: 10.1007/s00604-023-05909-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The level control of biological active molecules in human body fluids is important for the surveillance of several human diseases. Dopamine (DA) and uric acid (UA) are two important biomarkers of neurological and bone diseases, respectively. Design of sensitive and cost-effective sensors for their detection is an effervescent research field. We report on the straightforward design of laser-induced graphene electrodes (LIGEs) from the laser ablation of a polyimide substrate and their modification by electrochemical deposition of gold nanoparticles (AuNPs/LIGE) and their uses as chemosensors. Electrochemical investigations showed that the presence of gold nanoclusters onto the electrode surface improved the electrochemical surface area (ECSA) and the heterogenous electron transfer (HET) rate. Furthermore, the AuNPs/LIGEs can be used to detect simultaneously low concentrations of DA and UA in presence of ascorbic acid (AA) as an potentially interfering substance at redox potentials of 300 mV, 230 mV and 450 mV and 91 mV, respectively, compared with the Ag/AgCl (3 M KCl) reference electrode in cyclic voltametric. The method displayed linear ranges varying from 2 to 20 μM and 5 to 50 μM, led to limits of detection of 0.37 μM and 0.71 μM for DA and UA, respectively. The AuNPs/LIGE was applied to simultaneously detect both analytes in scarcely diluted human serum with good recoveries. The data show that the recovery percentages ranged from 94% ± 2.1 to 102 % ± 0.5 and from 94% ±0.3 to 112% ± 1.4 for dopamine and uric acid, respectively. Thus, the AuNPs/LIGEs are promising candidates for the detection of other biologically active molecules such as drugs, pesticides, and metabolites.
Collapse
Affiliation(s)
- Bibata Ouedraogo
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Sabrine Baachaoui
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia
| | - Amidou Tall
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratoire de Sciences et Technologies (LaST), Université Thomas SANKARA, 12 BP 417, Ouagadougou, Burkina Faso
| | - Issa Tapsoba
- Université Joseph KI-ZERBO, UFR-SEA, Laboratoire de Chimie Analytique, Environnementale et Biorganique (LCAEBiO), 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Noureddine Raouafi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Electrochimie (LR99ES15), Sensors and Biosensors Group, 2092, Tunis, El Manar, Tunisia.
| |
Collapse
|
6
|
Meftah M, Habel A, Baachaoui S, Yaacoubi-Loueslati B, Raouafi N. Sensitive electrochemical detection of polymorphisms in IL6 and TGFβ1 genes from ovarian cancer DNA patients using EcoRI and DNA hairpin-modified gold electrodes. Mikrochim Acta 2022; 190:15. [PMID: 36479645 DOI: 10.1007/s00604-022-05595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Two electrochemical bioplatforms were prepared based on thiolated hairpin DNA probes tethered to AuNP-modified screen-printed electrodes to detect T > G and T > C polymorphisms, namely rs1880269 and rs1800469, present the interleukin-6 (IL6) and transforming growth factor β1 (TGFβ1) genes. The electrochemical readout was ensured by the detection of the double-stranded DNA using methylene blue as a redox probe after treatment by EcoRI restrictase. The main parameters influencing the analytical response such as the thiolated DNA probe concentration, incubation time with electrode, DNA hybridization time, EcoRI enzyme load, and its cleavage time were optimized based on the current intensity and signal-to-blank (S/B) ratio as selection criteria. Using spiked buffer solutions, the IL6 and TGFβ1 E-bioplatforms display wide ranges of linearity (1 × 102-1 × 108 fM and 5 × 101-1 × 105 fM, respectively) and limits of detection (47.9 fM and 16.6 fM, respectively). The two bioelectrodes have also good discrimination toward 1-mismatched, two mismatched, and non-complementary sequences, when they were used 30-fold higher than the target sequences. More importantly, the two bioplatforms successfully detected the single nucleotide polymorphisms (SNPs) in scarcely diluted genomic DNA, collected from 52 donors, and showed they can reliably distinguish between heterozygous (TG and TC genotypes) and homozygous (GG and CC genotypes) patients with respect to the control subjects (TT genotype), where the differences are statistically highly significant (p-value < 0.0001). Thus, the designed devices could be used to conduct large cohort studies targeting these mutations or extended to other SNPs.
Collapse
Affiliation(s)
- Maroua Meftah
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis El Manar, Tunisia
| | - Azza Habel
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis El Manar, Tunisia
| | - Sabrine Baachaoui
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis El Manar, Tunisia
| | - Basma Yaacoubi-Loueslati
- Laboratory of Mycology, Pathologies and Biomarkers (LR16ES05), Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis El Manar, Tunisia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, Analytical Chemistry and Electrochemistry Lab (LR99ES15), Chemistry Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis El Manar, Tunisia.
| |
Collapse
|
7
|
Blidar A, Hosu O, Feier B, Ştefan G, Bogdan D, Cristea C. Gold-based nanostructured platforms for oxytetracycline detection from milk by a "signal-on" aptasensing approach. Food Chem 2022; 371:131127. [PMID: 34649198 DOI: 10.1016/j.foodchem.2021.131127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/09/2023]
Abstract
Several gold platforms of different morphologies were investigated in the elaboration of a new aptasensor for oxytetracycline. Au-nanostructures were electrochemically synthesized from solutions of different concentrations of HAuCl4 in different media by chronoamperometry, multipulse amperometry, and chronopotentiometry, respectively at carbon-based screen-printed electrodes (C-SPE). The nano-/micro-scale morphologies of the patterned surfaces and elemental composition were examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemical properties of the obtained gold nanostructured platforms (AuNSs|C-SPE) were investigated to achieve optimal aptamer coverage. The results showed that the aptasensor developed using the platform with thistle-like AuNSs exhibited the highest conductivity in terms of ferrocene signal and the largest effective area. Under optimal conditions, a linear range from 5.0 × 10-8 M to 1.2 × 10-6 M, with a limit of detection (LOD) of 8.7 × 10-9 M OXT were obtained, which is about 20 times lower than the EU regulations for OXT residues in milk. The electrochemical aptasensor was able to discriminate other antibacterial agents, such as amoxicillin, ampicillin, gentamicin, tetracycline, and vancomycin and was successfully applied in milk samples. This "signal-on" aptasensing approach provides a simple and cost-effective disposable sensor that could be easily applied for the on-site determination of antibiotics.
Collapse
Affiliation(s)
- Adrian Blidar
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oana Hosu
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Bogdan Feier
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Geanina Ştefan
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania; Robert Bosch SRL, Physical and Chemical Analysis Department (RBRO/EQV-A), Tetarom 3 Industrial Park, Jucu Herghelie 407352, Cluj, Romania
| | - Diana Bogdan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Cecilia Cristea
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Pharmacy, Analytical Chemistry Department, 4 Pasteur Street, 400349 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Faradilla P, Setiyanto H, Manurung RV, Saraswaty V. Electrochemical sensor based on screen printed carbon electrode-zinc oxide nano particles/molecularly imprinted-polymer (SPCE-ZnONPs/MIP) for detection of sodium dodecyl sulfate (SDS). RSC Adv 2021; 12:743-752. [PMID: 35425090 PMCID: PMC8978621 DOI: 10.1039/d1ra06862h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The foremost objective of this work is to prepare a novel electrochemical sensor-based screen-printed carbon electrode made of zinc oxide nanoparticles/molecularly imprinted polymer (SPCE-ZnONPs/MIP) and investigate its characteristics to detect sodium dodecyl sulfate (SDS). The MIP that is polyglutamic acid (PGA) film was synthesized via in situ electro-polymerization. The SDS's recognition site was left on the surface of the PGA film after extraction using the cyclic voltammetry (CV) technique, facilitating the specific detection of SDS. Moreover, the ZnONPs (∼71 nm, polydispersity index of 0.138) were synthesized and effectively combined with the MIP by a drop-casting method, enhancing the current response. The surface of the prepared SPCE-ZnONPs/MIP was characterized by scanning electron microscopy and energy dispersive X-ray. Besides, the electrochemical performance of the SPCE-ZnONPs/MIP was also studied through CV and differential pulse voltammetry (DPV) techniques. As an outstanding result, it is observed that the current response of SPCE-ZnONPs/MIP for detection of SDS remarkably increased almost four times higher from 0.009 mA to 0.041 mA in comparison with bare SPCE. More importantly, the proposed SPCE-ZnONPs/MIP exhibited an excellent selectivity (in the presence of interfering molecules of Ca2+, Pb2+, as well as sodium dodecylbenzene sulfonate (SDBS)), sensitivity, reproducibility, and repeatability. Since the modified sensor offers portability, it is suitable for in situ environment and cosmetic monitoring.
Collapse
Affiliation(s)
- Putri Faradilla
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia
| | - Henry Setiyanto
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia .,Center for Defence and Security Research, Institut Teknologi Bandung Bandung Indonesia
| | - Robeth Viktoria Manurung
- Research Centre for Electronics and Telecommunication, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| | - Vienna Saraswaty
- Research Unit for Clean Technology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| |
Collapse
|
9
|
Laroussi A, Raouafi N, Mirsky VM. Electrocatalytic Sensor for Hydrogen Peroxide Based on Immobilized Benzoquinone. ELECTROANAL 2021. [DOI: 10.1002/elan.202100113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arwa Laroussi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| | - Noureddine Raouafi
- University of Tunis El Manar Faculty of Science of Tunis Chemistry Department Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15) campus universitaire de Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Vladimir M. Mirsky
- Department of Nanobiotechnology Institute of Biotechnology Brandenburg University of Technology Cottbus-Senftenberg 01968 Senftenberg Germany
| |
Collapse
|
10
|
Zouari M, Campuzano S, Pingarrón JM, Raouafi N. Femtomolar direct voltammetric determination of circulating miRNAs in sera of cancer patients using an enzymeless biosensor. Anal Chim Acta 2020; 1104:188-198. [DOI: 10.1016/j.aca.2020.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 01/27/2023]
|
11
|
Lupan O, Postica V, Wolff N, Su J, Labat F, Ciofini I, Cavers H, Adelung R, Polonskyi O, Faupel F, Kienle L, Viana B, Pauporté T. Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32115-32126. [PMID: 31385698 DOI: 10.1021/acsami.9b08598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, the low-temperature single-step electrochemical deposition of arrayed ZnO nanowires (NWs) decorated by Au nanoparticles (NPs) with diameters ranging between 10 and 100 nm is successfully demonstrated for the first time. The AuNPs and ZnO NWs were grown simultaneously in the same growth solution in consideration of the HAuCl4 concentration. Optical, structural, and chemical characterizations were analyzed in detail, proving high crystallinity of the NWs as well as the distribution of Au NPs on the surface of zinc oxide NWs demonstrated by transmission electron microscopy. Individual Au NPs-functionalized ZnO NWs (Au-NP/ZnO-NWs) were incorporated into sensor nanodevices using an focused ion bean/scanning electron microscopy (FIB/SEM) scientific instrument. The gas-sensing investigations demonstrated excellent selectivity to hydrogen gas at room temperature (RT) with a gas response, Igas/Iair, as high as 7.5-100 ppm for Au-NP/ZnO-NWs, possessing a AuNP surface coverage of ∼6.4%. The concentration of HAuCl4 in the electrochemical solution was observed to have no significant impact on the gas-sensing parameters in our experiments. This highlights the significant influence of the total Au/ZnO interfacial area establishing Schottky contacts for the achievement of high performances. The most significant performance of H2 response was observed for gas concentrations higher than 500 ppm of H2 in the environment, which was attributed to the surface metallization of ZnO NWs during exposure to hydrogen. For this case, an ultrahigh response of about 32.9 and 47 to 1000 and 5000 ppm of H2 was obtained, respectively. Spin-polarized periodic density functional theory calculations were realized on Au/ZnO bulk and surface-functionalized models, validating the experimental hypothesis. The combination of H2 gas detection at RT, ultralow power consumption, and reduced dimensions makes these micro-nanodevices excellent candidates for hydrogen gas leakage detection, including hydrogen gas monitoring (less than 1 ppm).
Collapse
Affiliation(s)
- Oleg Lupan
- Institut de Recherche de Chimie Paris-IRCP, Chimie ParisTech , PSL Université , rue Pierre et Marie Curie 11 , 75231 Paris Cedex 05 , France
- Functional Nano Materials, Institute for Materials Science, Faculty of Engineering , Kiel University , str. Kaiserstraße 2 , D-24143 Kiel , Germany
- Center for Nanotechnology and Nanosensors, Department of Microelectronics & Biomedical Engineering , Technical University of Moldova , Stefan Cel Mare Av. 168 , MD 2004 Chisinau , Republic of Moldova
| | - Vasile Postica
- Center for Nanotechnology and Nanosensors, Department of Microelectronics & Biomedical Engineering , Technical University of Moldova , Stefan Cel Mare Av. 168 , MD 2004 Chisinau , Republic of Moldova
| | - Niklas Wolff
- Institute for Materials Science, Synthesis and Real Structure , Christian Albrechts University Kiel , str. Kaiserstraße 2 , D-24143 Kiel , Germany
| | - Jun Su
- i-CLeHS, Chimie ParisTech , PSL University , rue Pierre et Marie Curie nr. 11 , 75231 Paris Cedex 05 , France
| | - Frédéric Labat
- i-CLeHS, Chimie ParisTech , PSL University , rue Pierre et Marie Curie nr. 11 , 75231 Paris Cedex 05 , France
| | - Ilaria Ciofini
- i-CLeHS, Chimie ParisTech , PSL University , rue Pierre et Marie Curie nr. 11 , 75231 Paris Cedex 05 , France
| | - Heather Cavers
- Functional Nano Materials, Institute for Materials Science, Faculty of Engineering , Kiel University , str. Kaiserstraße 2 , D-24143 Kiel , Germany
| | - Rainer Adelung
- Functional Nano Materials, Institute for Materials Science, Faculty of Engineering , Kiel University , str. Kaiserstraße 2 , D-24143 Kiel , Germany
| | - Oleksandr Polonskyi
- Faculty of Engineering, Chair for Multicomponent Materials , Christian-Albrechts University of Kiel , str. Kaiserstraße nr. 2 , D-24143 Kiel , Germany
| | - Franz Faupel
- Faculty of Engineering, Chair for Multicomponent Materials , Christian-Albrechts University of Kiel , str. Kaiserstraße nr. 2 , D-24143 Kiel , Germany
| | - Lorenz Kienle
- Institute for Materials Science, Synthesis and Real Structure , Christian Albrechts University Kiel , str. Kaiserstraße 2 , D-24143 Kiel , Germany
| | - Bruno Viana
- Institut de Recherche de Chimie Paris-IRCP, Chimie ParisTech , PSL Université , rue Pierre et Marie Curie 11 , 75231 Paris Cedex 05 , France
| | - Thierry Pauporté
- Institut de Recherche de Chimie Paris-IRCP, Chimie ParisTech , PSL Université , rue Pierre et Marie Curie 11 , 75231 Paris Cedex 05 , France
| |
Collapse
|
12
|
Abstract
The development of biosensors for a range of analytes from small molecules to proteins to oligonucleotides is an intensely active field. Detection methods based on electrochemistry or on localized surface plasmon responses have advanced through using nanostructured electrodes prepared by electrodeposition, which is capable of preparing a wide range of different structures. Supported nanoparticles can be prepared by electrodeposition through applying fixed potentials, cycling potentials, and fixed current methods. Nanoparticle sizes, shapes, and surface densities can be controlled, and regular structures can be prepared by electrodeposition through templates. The incorporation of multiple nanomaterials into composite films can take advantage of the superior and potentially synergistic properties of each component. Nanostructured electrodes can provide supports for enzymes, antibodies, or oligonucleotides for creating sensors against many targets in areas such as genomic analysis, the detection of protein antigens, or the detection of small molecule metabolites. Detection can also be performed using electrochemical methods, and the nanostructured electrodes can greatly enhance electrochemical responses by carefully designed schemes. Biosensors based on electrodeposited nanostructures can contribute to the advancement of many goals in bioanalytical and clinical chemistry.
Collapse
|
13
|
Wang C, Qian J, An K, Ren C, Lu X, Hao N, Liu Q, Li H, Huang X, Wang K. Fabrication of magnetically assembled aptasensing device for label-free determination of aflatoxin B1 based on EIS. Biosens Bioelectron 2018; 108:69-75. [PMID: 29501049 DOI: 10.1016/j.bios.2018.02.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/07/2018] [Accepted: 02/18/2018] [Indexed: 11/30/2022]
Abstract
Aflatoxin B1 (AFB1), one of the most common mycotoxins in food matrixes, has been identified as the most toxic contaminant with mutagenic, teratogenic, immunosuppressive, and carcinogenic effects. In this work, a magnetically assembled aptasensing device has been designed for label-free determination of AFB1 by employing a disposable screen-printed carbon electrode (SPCE) covered with a designed polydimethylsiloxane (PDMS) film as the micro electrolytic cell. The magnetically controlled bio-probes were firstly prepared by immobilization of the thiolated aptamers on the Fe3O4@Au magnetic beads, which was rapidly assembled on the working electrode of SPCE within 10 s, by using a magnet placed at the opposite side. The PDMS film with a centered hole was covered on the SPCE surface to achieve a more practicable and flexible electrochemical measurement. In this effort, a label-free aptasensor for the sensitive and selective determination of AFB1 has been developed using electrochemical impedance spectroscopy upon the biorecognition between aptamers and the targets. The developed method had a wide linear range of 20 pg mL-1-50 ng mL-1 with a detection limit of 15 pg mL-1 (S/N = 3) and succeeded in spiked samples of peanuts. The developed aptasensing device shows fantastic application prospect with simple design, easy operation, low cost, and high sensitivity and selectivity characteristics. This sensing strategy represents a promising path toward routine quality control of food safety and creates the opportunity to develop facile aptasensing device for other targets.
Collapse
Affiliation(s)
- Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Keqi An
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Chanchan Ren
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoting Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
14
|
Mars A, Argoubi W, Ben Aoun S, Raouafi N. Induced conformational change on ferrocenyl-terminated alkyls and their application as transducers for label-free immunosensing of Alzheimer's disease biomarker. RSC Adv 2016. [DOI: 10.1039/c5ra19328a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ApoE Alzheimer's disease biomarker can be sensitively detected by a label-free platform using flexible ferrocene-terminated alkyl chains. The immunorecognition triggers conformational changes, which improve the rate constants of electron-transfer.
Collapse
Affiliation(s)
- Abdelmoneim Mars
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| | - Wicem Argoubi
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| | - Sami Ben Aoun
- Taibah University
- Faculty of Science
- Department of Chemistry
- Al-Madinah Al-Munawarah
- Saudi Arabia
| | - Noureddine Raouafi
- University of Tunis El-Manar
- Faculty of Science of Tunis
- Chemistry Department
- Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)
- Campus Universitaire de Tunis El-Manar 2092
| |
Collapse
|