1
|
Interfacial Characterization of Polypyrrole/AuNP Composites towards Electrocatalysis of Ascorbic Acid Oxidation. Molecules 2022; 27:molecules27185776. [PMID: 36144512 PMCID: PMC9504594 DOI: 10.3390/molecules27185776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polypyrrole (PPy) is an interesting conducting polymer due to its good environmental stability, high conductivity, and biocompatibility. The association between PPy and metallic nanoparticles has been widely studied since it enhances electrochemical properties. In this context, gold ions are reduced to gold nanoparticles (AuNPs) directly on the polymer surface as PPy can be oxidized to an overoxidized state. This work proposes the PPy electrochemical synthesis followed by the direct reduction of gold on its surface in a fast reaction. The modified electrodes were characterized by electronic microscopic and infrared spectroscopy. The effect of reduction time on the electrochemical properties was evaluated by the electrocatalytic properties of the obtained material from the oxidation of ascorbic acid (AA) and electrochemical impedance spectroscopy studies. The presence of AuNPs improved the AA electrocatalysis by reducing oxidation potential and lowering charge transfer resistance. EIS data were fitted using a transmission line model. The results indicated an increase in the electronic transport of the polymeric film in the presence of AuNPs. However, PPy overoxidation occurs when the AuNPs’ deposition is higher than 30 s. In PPy/AuNPs 15 s, smaller and less agglomerated particles were formed with fewer PPy overoxidized, confirming the observed electrocatalytic behavior.
Collapse
|
2
|
Kolzunova L, Shchitovskaya E, Karpenko M. Polymethylolacrylamide/AuNPs Nanocomposites: Electrochemical Synthesis and Functional Characteristics. Polymers (Basel) 2021; 13:polym13142382. [PMID: 34301140 PMCID: PMC8309574 DOI: 10.3390/polym13142382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
In this study the advantages of the electrochemical approach to the formation of polymer/metal nanoparticle composites are demonstrated. The method enables one to simplify the multistage processes of traditional technologies for the production of such materials through combining all intermediate processes in one stage and reducing the total formation time to 3–10 min. The possibility of a single-stage formation of a polymethylolacrylamide/AuNPs composite through including AuNPs into an electrically non-conducting polymethylolacrylamide film (carrier) formed by electropolymerization through potentiostatic electrolysis is also demonstrated for the first time. It is established that the addition of tetrachloroauric acid (HAuCl4·4H2O) into a monomeric composition containing acrylamide, formaldehyde, N,N′-methylene-bis-acrylamide, zinc chloride, and H2O results in simultaneous electrochemical initiation of polymerization with the formation of a polymer film on the cathode, electrolytic reduction of gold ions to Au0, and immobilization of AuNPs particles into the growing polymer matrix. It was found that the formation of the PMAA / AuNPs composite is energetically more favorable than the synthesis of the main PMAA film, since it proceeds at a lower cathodic potential. The inclusion of AuNPs into the polymethylolacrylamide film was confirmed visually, as well as by X-ray phase analysis, small-angle X-ray scattering, microscopy, and element analysis. The gold content in the composite increases along with the increase of the concentration of HAuCl4 in the electrolyte. The radius of the AuNPs particles was found to range between 3 and 7 nm. The AuNPs particles are spherical in shape and can combine into larger clusters containing up to 10 or more particles. The dynamics of formation, structure, and morphology of the polymethylolacrylamide/AuNPs composite were investigated. It was revealed that gold nanoparticles are mainly concentrated in the near-electrode and near-solution layers of the composite. We found that the composite has electrocatalytic activity. The possibility of its use as a sensor for hydrogen peroxide is demonstrated.
Collapse
Affiliation(s)
- Lidiia Kolzunova
- Institute of Chemistry, Far East Branch of the Russian Academy of Sciences, 100_letiya Vladivostoka pr. 159, Vladivostok 690022, Russia;
- Correspondence: (L.K.); (E.S.); Tel.: +7-(423)2215345 (L.K.)
| | - Elena Shchitovskaya
- Institute of Chemistry, Far East Branch of the Russian Academy of Sciences, 100_letiya Vladivostoka pr. 159, Vladivostok 690022, Russia;
- Department of Physical and Analytical Chemistry, School of Natural Sciences, Campus, 10 Ajax Bay, Russky Island, Far Eastern Federal University (FEFU), Vladivostok 690922, Russia
- Correspondence: (L.K.); (E.S.); Tel.: +7-(423)2215345 (L.K.)
| | - Maxim Karpenko
- Institute of Chemistry, Far East Branch of the Russian Academy of Sciences, 100_letiya Vladivostoka pr. 159, Vladivostok 690022, Russia;
| |
Collapse
|
3
|
Hosnedlova B, Sochor J, Baron M, Bjørklund G, Kizek R. Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 2019; 60:3271-3289. [PMID: 31809581 DOI: 10.1080/10408398.2019.1682965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is one of the most promising future technologies for the food industry. Some of its applications have already been introduced in analytical techniques and food packaging technologies. This review summarizes existing knowledge about the implementation of nanotechnology in wine laboratory procedures. The focus is mainly on recent advancements in the design and development of nanomaterial-based sensors for wine compounds analysis and assessing wine safety. Nanotechnological approaches could be useful in the wine production process, to simplify wine analysis methods, and to improve the quality and safety of the final product.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic.,CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic
| | - Jiri Sochor
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Mojmir Baron
- Faculty of Horticulture, Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Rene Kizek
- CONEM Metallomics Nanomedicine Research Group (CMNRG), Brno, Czech Republic.,Faculty of Pharmacy, Department of Human Pharmacology and Toxicology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
4
|
Electrochemical Sensors Modified with Combinations of Sulfur Containing Phthalocyanines and Capped Gold Nanoparticles: A Study of the Influence of the Nature of the Interaction between Sensing Materials. NANOMATERIALS 2019; 9:nano9111506. [PMID: 31652754 PMCID: PMC6915348 DOI: 10.3390/nano9111506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Voltametric sensors formed by the combination of a sulfur-substituted zinc phthalocyanine (ZnPcRS) and gold nanoparticles capped with tetraoctylammonium bromide (AuNPtOcBr) have been developed. The influence of the nature of the interaction between both components in the response towards catechol has been evaluated. Electrodes modified with a mixture of nanoparticles and phthalocyanine (AuNPtOcBr/ZnPcRS) show an increase in the intensity of the peak associated with the reduction of catechol. Electrodes modified with a covalent adduct-both component are linked through a thioether bond-(AuNPtOcBr-S-ZnPcR), show an increase in the intensity of the oxidation peak. Voltammograms registered at increasing scan rates show that charge transfer coefficients are different in both types of electrodes confirming that the kinetics of the electrochemical reaction is influenced by the nature of the interaction between both electrocatalytic materials. The limits of detection attained are 0.9 × 10−6 mol∙L−1 for the electrode modified with the mixture AuNPtOcBr/ZnPcRS and 1.3 × 10−7 mol∙L−1 for the electrode modified with the covalent adduct AuNPtOcBr-S-ZnPcR. These results indicate that the establishment of covalent bonds between nanoparticles and phthalocyanines can be a good strategy to obtain sensors with enhanced performance, improving the charge transfer rate and the detection limits of voltammetric sensors.
Collapse
|
5
|
Garcia-Hernandez C, Garcia-Cabezon C, Martin-Pedrosa F, Rodriguez-Mendez ML. Analysis of musts and wines by means of a bio-electronic tongue based on tyrosinase and glucose oxidase using polypyrrole/gold nanoparticles as the electron mediator. Food Chem 2019; 289:751-756. [PMID: 30955676 DOI: 10.1016/j.foodchem.2019.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
A bioelectronic tongue (bioET) based on combinations of enzymes (tyrosinase and glucose oxidase) and polypyrrole (Ppy) or polypyrrole/AuNP (Ppy/AuNP) composites was build up and applied to the analysis and discrimination of musts and wines. Voltammetric responses of the array of sensors demonstrated the effectiveness of polymers as electron mediators and the existence of favorable synergistic effects between Ppy and the AuNPs. Using Principal Component Analysis and Parallel Factor Analysis it was possible to discriminate musts according to the °Brix and TPI (Total Polyphenol Index), and wines according to the alcoholic degree and TPI. Partial Least Squares provided good correlations between the bioET output and traditional chemical parameters. Moreover, Support Vector Machines permitted to predict the TPI and the alcoholic degree of wines, from data provided by the bioET in the corresponding grapes. This result opens the possibility to predict wine characteristics from the beginning of the vinification process.
Collapse
Affiliation(s)
- C Garcia-Hernandez
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - C Garcia-Cabezon
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - F Martin-Pedrosa
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| | - M L Rodriguez-Mendez
- Group UVaSens, Engineers School, Universidad de Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Sonawane JM, Al-Saadi S, Singh Raman R, Ghosh PC, Adeloju SB. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mazzotta E, Caroli A, Primiceri E, Monteduro AG, Maruccio G, Malitesta C. All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3693-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3556-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
García-Hernández C, García-Cabezón C, Martín-Pedrosa F, De Saja JA, Rodríguez-Méndez ML. Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1948-1959. [PMID: 28144543 PMCID: PMC5238661 DOI: 10.3762/bjnano.7.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 05/25/2023]
Abstract
The sensing properties of electrodes chemically modified with PEDOT/PSS towards catechol and hydroquinone sensing have been successfully improved by combining layers of PEDOT/PSS with layers of a secondary electrocatalytic material such as gold nanoparticles (PEDOT/PSS/AuNPs), copper phthalocyanine (PEDOT/PSS/CuPc) or lutetium bisphthalocyanine (PEDOT/PSS/LuPc2). Layered composites exhibit synergistic effects that strongly enhance the electrocatalytic activity as indicated by the increase in intensity and the shift of the redox peaks to lower potentials. A remarkable improvement has been achieved using PEDOT/PSS/LuPc2, which exhibits excellent electrocatalytic activity towards the oxidation of catechol. The kinetic studies demonstrated diffusion-controlled processes at the electrode surfaces. The kinetic parameters such as Tafel slopes and charge transfer coefficient (α) confirm the improved electrocatalytic activity of the layered electron mediators. The peak currents increased linearly with concentration of catechol and hydroquinone over the range of 1.5 × 10-4 to 4.0 × 10-6 mol·L-1 with a limit of detection on the scale of μmol·L-1. The layered composite hybrid systems were also found to be excellent electron mediators in biosensors containing tyrosinase and laccase, and they combine the recognition and biocatalytic properties of biomolecules with the unique catalytic features of composite materials. The observed increase in the intensity of the responses allowed detection limits of 1 × 10-7 mol·L-1 to be attained.
Collapse
Affiliation(s)
- Celia García-Hernández
- Grupo Uvasens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
| | - Cristina García-Cabezón
- Grupo Uvasens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
| | - Fernando Martín-Pedrosa
- Grupo Uvasens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
| | - José Antonio De Saja
- Grupo Uvasens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
| | - María Luz Rodríguez-Méndez
- Grupo Uvasens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid, Spain
| |
Collapse
|