1
|
Ghosh C, Priegue P, Leelayuwapan H, Fuchsberger FF, Rademacher C, Seeberger PH. Synthetic Glyconanoparticles Modulate Innate Immunity but Not the Complement System. ACS APPLIED BIO MATERIALS 2022; 5:2185-2192. [PMID: 35435657 PMCID: PMC9115801 DOI: 10.1021/acsabm.2c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/30/2022] [Indexed: 01/12/2023]
Abstract
Nanoparticles that modulate innate immunity can act as vaccine adjuvants and antigen carriers and are promising alternatives to conventional anticancer therapy. Nanoparticles might, upon contact with serum, activate the complement system that might in turn result in clearance and allergic reactions. Herein, we report that ultrasmall glyconanoparticles decorated with nonimmunogenic α-(1-6)-oligomannans trigger an innate immune response without drastically affecting the complement system. These negatively charged glyconanoparticles (10-15 nm) are stable in water and secrete proinflammatory cytokines from macrophages via the NF-κB signaling pathway. The glyconanoparticles can be used as immunomodulators for monotherapy or in combination with drugs and vaccines.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Patricia Priegue
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Harin Leelayuwapan
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
2
|
Ghosh C, Varela‐Aramburu S, Eldesouky HE, Salehi Hossainy S, Seleem MN, Aebischer T, Seeberger PH. Non‐Toxic Glycosylated Gold Nanoparticle‐Amphotericin B Conjugates Reduce Biofilms and Intracellular Burden of Fungi and Parasites. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chandradhish Ghosh
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Silvia Varela‐Aramburu
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 Berlin 14195 Germany
| | - Hassan E. Eldesouky
- Department of Comparative Pathobiology Purdue University 625 Harrison Street West Lafayette IN 47907 USA
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA
| | - Sharareh Salehi Hossainy
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases Robert Koch Institute Berlin 13353 Germany
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology Purdue University 625 Harrison Street West Lafayette IN 47907 USA
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA
| | - Toni Aebischer
- Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Department of Infectious Diseases Robert Koch Institute Berlin 13353 Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 Berlin 14195 Germany
| |
Collapse
|
3
|
Varela-Aramburu S, Ghosh C, Goerdeler F, Priegue P, Moscovitz O, Seeberger PH. Targeting and Inhibiting Plasmodium falciparum Using Ultra-small Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43380-43387. [PMID: 32875786 PMCID: PMC7586288 DOI: 10.1021/acsami.0c09075] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
Malaria, a mosquito-borne disease caused by Plasmodium species, claims more than 400,000 lives globally each year. The increasing drug resistance of the parasite renders the development of new anti-malaria drugs necessary. Alternatively, better delivery systems for already marketed drugs could help to solve the resistance problem. Herein, we report glucose-based ultra-small gold nanoparticles (Glc-NCs) that bind to cysteine-rich domains of Plasmodium falciparum surface proteins. Microscopy shows that Glc-NCs bind specifically to extracellular and all intra-erythrocytic stages of P. falciparum. Glc-NCs may be used as drug delivery agents as illustrated for ciprofloxacin, a poorly soluble antibiotic with low antimalarial activity. Ciprofloxacin conjugated to Glc-NCs is more water-soluble than the free drug and is more potent. Glyco-gold nanoparticles that target cysteine-rich domains on parasites may be helpful for the prevention and treatment of malaria.
Collapse
Affiliation(s)
- Silvia Varela-Aramburu
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Biology,
Chemistry, Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Chandradhish Ghosh
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Felix Goerdeler
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Biology,
Chemistry, Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Patricia Priegue
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Biology,
Chemistry, Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Biology,
Chemistry, Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular
Systems, Max Planck Institute of Colloids
and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Biology,
Chemistry, Pharmacy, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
4
|
Lassenberger A, Scheberl A, Batchu KC, Cristiglio V, Grillo I, Hermida-Merino D, Reimhult E, Baccile N. Biocompatible Glyconanoparticles by Grafting Sophorolipid Monolayers on Monodispersed Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:3095-3107. [DOI: 10.1021/acsabm.9b00427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Lassenberger
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Andrea Scheberl
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
| | | | - Viviana Cristiglio
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Isabelle Grillo
- Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Daniel Hermida-Merino
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38042 CEDEX 9, France
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Institute for Biologically Inspired Materials, Muthgasse 11/II, 1190 Vienna, Austria
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Paris F-75005, France
| |
Collapse
|
5
|
Yang X, Yang Z, Tang F, Xu J, Zhang M, Choi MMF. Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:955-966. [PMID: 31165022 PMCID: PMC6541327 DOI: 10.3762/bjnano.10.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Polydisperse water-soluble gold nanoclusters (AuNCs) protected by penicillamine have been synthesized in this work. The sequential size-selective precipitation (SSSP) technique has been applied for the size fractionation and purification of the monolayer-protected AuNCs. Through continuously adding acetone to a crude AuNC aqueous solution and controlling the volume percentage of acetone, we successfully separated the polydisperse AuNCs with diameters ranging from 0.5 to 5.4 nm into four different fractions sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes were removed from the AuNCs fractions. These results demonstrate the considerable potential of the SSSP technique for size-based separation and purification of AuNCs, achieving not only the isolation of larger nanoclusters (NCs) from small NCs in a continuous fashion, but also for the removal of small-molecule impurities. Based on the results from the mass spectrometry and thermogravimetric analysis, the average composition of the four fractions can be represented by Au38(SR)18, Au28(SR)15, Au18(SR)12, and Au11(SR)8, respectively. This indicates that the SSSP separation is mainly dependent on the core size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900-790 nm was investigated at room temperature. The results show that the peak emission energy of the size-selected AuNCs undergoes a blue shift when the size is decreased, which can be attributed to the quantum confinement effect.
Collapse
Affiliation(s)
- Xiupei Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Zhengli Yang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Jing Xu
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Maoxue Zhang
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000, China
| | - Martin M F Choi
- Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
6
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|