1
|
Madhavan S, Keshri SK, Kapur M. Transition Metal‐Mediated Functionalization of Isoxazoles: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchithra Madhavan
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Santosh Kumar Keshri
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| |
Collapse
|
2
|
Praveen C, Dupeux A, Michelet V. Catalytic Gold Chemistry: From Simple Salts to Complexes for Regioselective C-H Bond Functionalization. Chemistry 2021; 27:10495-10532. [PMID: 33904614 DOI: 10.1002/chem.202100785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/07/2022]
Abstract
Gold coordinated to neutral phosphines (R3 P), N-heterocyclic carbenes (NHCs) or anionic ligands is catalytically active in functionalizing various C-H bonds with high selectivity. The sterics/electronic nature of the studied C-H bond, oxidation state of gold and stereoelectronic capacity of the coordinated auxiliary ligand are some of the associated selectivity factors in gold-catalyzed C-H bond functionalization reactions. Hence, in this review a comprehensive update about the action of different types of gold catalysts, from simple to sophisticated ones, on C-H bond reactions and their regiochemical outcome is disclosed. This review also highlights the catalytic applications of Au(I)- and Au(III)-species in creating new opportunities for the regio- and site-selective activation of challenging C-H bonds. Finally, it also intends to stress the potential applications in selective C-H bond activation associated with a variety of heterocycles recently described in the literature.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemcial Research Institute (CSIR Laboratory) Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| | - Aurélien Dupeux
- Institut de Chimie de Nice, UMR 7272 CNRS, University Côte d'Azur Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| | - Véronique Michelet
- Institut de Chimie de Nice, UMR 7272 CNRS, University Côte d'Azur Valrose Park, Faculty of Sciences, 06108, Nice Cedex 2, France
| |
Collapse
|
3
|
Minami Y, Hiyama T. Cross-coupling Reaction based on the Transformation of Trialkylsilyl Groups. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yasunori Minami
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | | |
Collapse
|
4
|
China H, Kageyama N, Yatabe H, Takenaga N, Dohi T. Practical Synthesis of 2-Iodosobenzoic Acid (IBA) without Contamination by Hazardous 2-Iodoxybenzoic Acid (IBX) under Mild Conditions. Molecules 2021; 26:1897. [PMID: 33801611 PMCID: PMC8036297 DOI: 10.3390/molecules26071897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
We report a convenient and practical method for the preparation of nonexplosive cyclic hypervalent iodine(III) oxidants as efficient organocatalysts and reagents for various reactions using Oxone® in aqueous solution under mild conditions at room temperature. The thus obtained 2-iodosobenzoic acids (IBAs) could be used as precursors of other cyclic organoiodine(III) derivatives by the solvolytic derivatization of the hydroxy group under mild conditions of 80 °C or lower temperature. These sequential procedures are highly reliable to selectively afford cyclic hypervalent iodine compounds in excellent yields without contamination by hazardous pentavalent iodine(III) compound.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Nami Kageyama
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Hotaka Yatabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (N.K.); (H.Y.)
| |
Collapse
|
5
|
Tsuda M, Morita T, Fukuhara S, Nakamura H. Synthesis of 4-amino-5-allenylisoxazoles via gold(I)-catalysed propargyl aza-Claisen rearrangement. Org Biomol Chem 2021; 19:1358-1364. [PMID: 33475653 DOI: 10.1039/d0ob02544e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Propargyl aza-Claisen rearrangement of 4-propargylaminoisoxazoles 1 proceeded in the presence of cationic gold(i) catalysts to give 4-amino-5-allenylisoxazoles 2 in good to high yields. The silyl group at the terminal alkyne and a cationic gold(i) catalyst bearing a sterically bulky ligand are essential for the generation of isolable allene intermediates. The N-protection of the generated 4-amino-5-allenylisoxazoles 2 allowed the isolation of 5-allenylisoxazoles 4 that have never been synthesized. N-Propargyl aniline 5 was successfully converted to the corresponding ortho-allenyl aniline 6 under the current reaction conditions.
Collapse
Affiliation(s)
- Masato Tsuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | - Shintaro Fukuhara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan. and School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
6
|
Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem Rev 2021; 121:8979-9038. [DOI: 10.1021/acs.chemrev.0c00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
Fricke C, Reid WB, Schoenebeck F. A Review on Oxidative Gold‐Catalyzed C‐H Arylation of Arenes – Challenges and Opportunities. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - William B. Reid
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
8
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
9
|
Ball LT, Corrie TJA, Cresswell AJ, Lloyd-Jones GC. Kinetic Analysis of Domino Catalysis: A Case Study on Gold-Catalyzed Arylation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liam T. Ball
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Tom J. A. Corrie
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Alexander J. Cresswell
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black
Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
10
|
Ito H, Matsuoka W, Yano Y, Shibata M, Itami K. Annulative π-Extension (APEX) Reactions for Precise Synthesis of Polycyclic Aromatic Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hideto Ito
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| | | | | | | | - Kenichiro Itami
- Graduate School of Science, Nagoya University
- JST-ERATO Itami Molecular Nanocarbon Project
- Institute of Transformative Bio-Molecules, Nagoya University
| |
Collapse
|
11
|
Morita T, Fuse S, Nakamura H. Photochemical Conversion of Isoxazoles to 5-Hydroxyimidazolines. Org Lett 2020; 22:3460-3463. [PMID: 32286839 DOI: 10.1021/acs.orglett.0c00910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photochemical conversion of isoxazole I to 5-hydroxyimidazoline VII proceeded via the trapping of the photogenerated acylazirine III with amines under UV light irradiation. This is the first report of the efficient synthesis of 5-hydroxyimidazolines that are not readily accessible by other means. 5-Hydroxyimidazolines were also converted into multisubstituted imidazoles in one step by treatment with trifluoroacetic anhydride (TFAA) and 2,6-lutidine in dichloromethane.
Collapse
Affiliation(s)
- Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Shinichiro Fuse
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
12
|
Panigrahi A, Whitaker D, Vitorica-Yrezabal IJ, Larrosa I. Ag/Pd Cocatalyzed Direct Arylation of Fluoroarene Derivatives with Aryl Bromides. ACS Catal 2020; 10:2100-2107. [PMID: 32201633 PMCID: PMC7079724 DOI: 10.1021/acscatal.9b05334] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Diverse C-H functionalizations catalyzed by Pd employ Ag(I) salts added as halide abstractors or oxidants. Recent reports have shown that Ag can also perform the crucial C-H activation step in several of these functionalizations. However, all of these processes are limited by the wasteful requirement for (super)stoichiometric Ag(I) salts. Herein, we report the development of a Ag/Pd cocatalyzed direct arylation of (fluoroarene) chromium tricarbonyl complexes with bromoarenes. The small organic salt, NMe4OC(CF3)3, added as a halide abstractor, enables the use of a catalytic amount of Ag, reversing the rapid precipitation of AgBr. We have shown through H/D scrambling and kinetic studies that a (PR3)Ag-alkoxide is responsible for C-H activation, a departure from previous studies with Ag carboxylates. Furthermore, the construction of biaryls directly from the simple arene is achieved via a one-pot chromium tricarbonyl complexation/C-H arylation/decomplexation sequence using (pyrene)Cr(CO)3 as a Cr(CO)3 donor.
Collapse
Affiliation(s)
- Adyasha Panigrahi
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Daniel Whitaker
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
13
|
Medina-Mercado I, Asomoza-Solís EO, Martínez-González E, Ugalde-Saldívar VM, Ledesma-Olvera LG, Barquera-Lozada JE, Gómez-Vidales V, Barroso-Flores J, Frontana-Uribe BA, Porcel S. Ascorbic Acid as an Aryl Radical Inducer in the Gold-Mediated Arylation of Indoles with Aryldiazonium Chlorides. Chemistry 2020; 26:634-642. [PMID: 31621965 DOI: 10.1002/chem.201904413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 12/22/2022]
Abstract
In recent years interest in the development of protocols that facilitate the oxidative addition of gold to access mild cross-coupling processes mediated by this metal has increased. In this context, we report herein that ascorbic acid, a natural and readily accessible antioxidant, can be used to accelerate the oxidative addition of aryldiazonium chlorides onto AuI . The aryl-AuIII species generated in this way, has been used to prepare 3-arylindoles in a one-pot protocol starting from anilines and para-, meta-, and ortho- substituted aryldiazonium chlorides. The mechanism underlying the oxidative addition has been examined in detail based on EPR analyses, cyclic voltammetry, and DFT calculations. Interestingly, we have found that in this protocol, the chloride atom induces the AuII /AuIII oxidation step.
Collapse
Affiliation(s)
- Ignacio Medina-Mercado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| | - Eric Omar Asomoza-Solís
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| | - Eduardo Martínez-González
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Cd. Mx., 04510, México
| | - Victor Manuel Ugalde-Saldívar
- Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Cd. Mx., 04510, México
| | - Lydia Gabriela Ledesma-Olvera
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| | - José Enrique Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| | - Virginia Gómez-Vidales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| | - Joaquín Barroso-Flores
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México.,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C.P. 50200, Toluca, Estado de México, México
| | - Bernardo A Frontana-Uribe
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México.,Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C.P. 50200, Toluca, Estado de México, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Cd. Mx., 04510, México
| |
Collapse
|
14
|
Fricke C, Dahiya A, Reid WB, Schoenebeck F. Gold-Catalyzed C-H Functionalization with Aryl Germanes. ACS Catal 2019; 9:9231-9236. [PMID: 31608162 PMCID: PMC6781487 DOI: 10.1021/acscatal.9b02841] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The development of orthogonal Csp2 -Csp2 coupling regimes to the omnipresent Pd-catalysis class would enable an additional dimension of modularity in the construction of densely functionalized biaryl motifs. In this context, the identification of potent functional groups for selective transformations is in high demand. Although organogermanium compounds are generally believed to be of low reactivity in homogenous catalysis, this report discloses the highly efficient and orthogonal reactivity of aryl germanes with arenes under gold catalysis. The method is characterized by mildness, the employment of an air- and moisture-stable gold catalyst, and robustness. Our mechanistic studies show that aryl germanes are highly reactive with Au(I) and Au(III). Our computational data suggest that the origin of this reactivity primarily lies in the relatively low bond dissociation energy and as such low distortion energy to reach the key bond activating transition state.
Collapse
Affiliation(s)
- Christoph Fricke
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - William B. Reid
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
15
|
Rodriguez J, Zeineddine A, Sosa Carrizo ED, Miqueu K, Saffon-Merceron N, Amgoune A, Bourissou D. Catalytic Au(i)/Au(iii) arylation with the hemilabile MeDalphos ligand: unusual selectivity for electron-rich iodoarenes and efficient application to indoles. Chem Sci 2019; 10:7183-7192. [PMID: 31588286 PMCID: PMC6685352 DOI: 10.1039/c9sc01954e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
The ability of the hemilabile (P,N) MeDalphos ligand to trigger oxidative addition of iodoarenes to gold has been thoroughly studied. Competition experiments and Hammett correlations substantiate a clear preference of gold for electron-enriched substrates both in stoichiometric oxidative addition reactions and in catalytic C-C cross-coupling with 1,3,5-trimethoxybenzene. This feature markedly contrasts with the higher reactivity of electron-deprived substrates typically encountered with palladium. Based on DFT calculations and detailed analysis of the key transition states (using NBO, CDA and ETS-NOCV methods in particular), the different behavior of the two metals is proposed to result from inverse electron flow between the substrate and metal. Indeed, oxidative addition of iodobenzene is associated with a charge transfer from the substrate to the metal at the transition state for gold, but opposite for palladium. The higher electrophilicity of the gold center favors electron-rich substrates while important back-donation from palladium favors electron-poor substrates. Facile oxidative addition of iodoarenes combined with the propensity of gold(iii) complexes to readily react with electron-rich (hetero)arenes prompted us to apply the (MeDalphos)AuCl complex in the catalytic arylation of indoles, a challenging but very important transformation. The gold complex proved to be very efficient, general and robust. It displays complete regioselectivity for C3 arylation, it tolerates a variety of functional groups at both the iodoarene and indole partners (NO2, CO2Me, Br, OTf, Bpin, OMe…) and it proceeds under mild conditions (75 °C, 2 h).
Collapse
Affiliation(s)
- Jessica Rodriguez
- CNRS/Université Paul Sabatier , Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , 118 Route de Narbonne , 31062 Toulouse Cedex 09 , France .
| | - Abdallah Zeineddine
- CNRS/Université Paul Sabatier , Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , 118 Route de Narbonne , 31062 Toulouse Cedex 09 , France .
| | - E Daiann Sosa Carrizo
- CNRS/UNIV PAU & PAYS ADOUR , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , (IPREM UMR 5254) , Hélioparc, 2 Avenue du Président Angot , 64053 Pau Cedex 09 , France
| | - Karinne Miqueu
- CNRS/UNIV PAU & PAYS ADOUR , Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux , (IPREM UMR 5254) , Hélioparc, 2 Avenue du Président Angot , 64053 Pau Cedex 09 , France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse (FR 2599) , 118 Route de Narbonne , 31062 Toulouse Cedex 09 , France
| | - Abderrahmane Amgoune
- CNRS/Université Paul Sabatier , Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , 118 Route de Narbonne , 31062 Toulouse Cedex 09 , France .
| | - Didier Bourissou
- CNRS/Université Paul Sabatier , Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069) , 118 Route de Narbonne , 31062 Toulouse Cedex 09 , France .
| |
Collapse
|
16
|
Yugandar S, Nakamura H. Rhodium(iii)-catalysed carboxylate-directed C-H functionalizations of isoxazoles with alkynes. Chem Commun (Camb) 2019; 55:8382-8385. [PMID: 31219484 DOI: 10.1039/c9cc03283e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient oxidative [4+2] annulation of isoxazolyl-4-carboxylic acids with internal alkynes proceeded in the presence of the [Cp*RhCl2]2 catalyst. Oxidants controlled the formation of pyranoisoxazolones and isoquinolines. A decarboxylative approach for the hydroarylation of alkynes with isoxazolyl-4-carboxylic acids was also developed in the presence of the [Cp*Rh(CH3CN)3][SbF6]2 catalyst.
Collapse
Affiliation(s)
- Somaraju Yugandar
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.
| |
Collapse
|
17
|
Huang Y, Brown MK. Synthesis of Bisheteroarylalkanes by Heteroarylboration: Development and Application of a Pyridylidene-Copper Complex. Angew Chem Int Ed Engl 2019; 58:6048-6052. [PMID: 30838739 PMCID: PMC6547830 DOI: 10.1002/anie.201902238] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 12/15/2022]
Abstract
The development of pyridylidene-Cu-complexes and their application in Cu/Pd-catalyzed heteroarylboration of alkenylheteroarenes is reported. The significance of 1,1'-heteroarylalkanes as building blocks for drug discovery, as well as the straightforward and modular sequence to prepare the pyridylidene-Cu-complexes, makes this catalyst and it applications attractive for chemical synthesis. Furthermore, chiral variants of the pyridylidene-Cu-complexes have been prepared and utilized in the enantioselective arylboration of E-alkenes, further demonstrating the value and potential of this class of catalysts.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| |
Collapse
|
18
|
Huang Y, Brown MK. Synthesis of Bisheteroarylalkanes by Heteroarylboration: Development and Application of a Pyridylidene–Copper Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Huang
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47405 USA
| |
Collapse
|
19
|
Minami Y, Hiyama T. Designing Cross-Coupling Reactions using Aryl(trialkyl)silanes. Chemistry 2018; 25:391-399. [PMID: 30024650 DOI: 10.1002/chem.201803213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Organo(trialkyl)silanes have several advantages, including high stability, low toxicity, good solubility, easy handling, and ready availability compared with heteroatom-substituted silanes. However, methods for the cross-coupling of organo(trialkyl)silanes are limited, most probably because of their exceeding robustness. Thus, a practical method for the cross-coupling of organo(trialkyl)silanes has been a long-standing challenging research target. This article discusses how aryl(trialkyl)silanes can be used in cross-coupling reactions. A pioneering example is CuII catalytic conditions with the use of electron-accepting aryl- or heteroaryl(triethyl)silanes and aryl iodides. The reaction forms biaryls or teraryls. This design concept can be extended to Pd/CuII -catalyzed cross-coupling polymerization reactions between such silanes and aryl bromides or chlorides and to CuI -catalyzed alkylation using alkyl halides.
Collapse
Affiliation(s)
- Yasunori Minami
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Tamejiro Hiyama
- Research and Development Initiative, Chuo University, 1-13-27, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
20
|
Keske EC, West TH, Lloyd-Jones GC. Analysis of Autoinduction, Inhibition, and Autoinhibition in a Rh-Catalyzed C–C Cleavage: Mechanism of Decyanative Aryl Silylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric C. Keske
- EaStChem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Thomas H. West
- EaStChem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Guy C. Lloyd-Jones
- EaStChem, School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
21
|
Vivancos Á, Segarra C, Albrecht M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chem Rev 2018; 118:9493-9586. [PMID: 30014699 DOI: 10.1021/acs.chemrev.8b00148] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoionic carbenes are a subclass of the family of N-heterocyclic carbenes that generally feature less heteroatom stabilization of the carbenic carbon and hence impart specific donor properties and reactivity schemes when coordinated to a transition metal. Therefore, mesoionic carbenes and their complexes have attracted considerable attention both from a fundamental point of view as well as for application in catalysis and beyond. As a follow-up of an earlier Chemical Reviews overview from 2009, the organometallic chemistry of N-heterocyclic carbenes with reduced heteroatom stabilization is compiled for the 2008-2017 period, including specifically the chemistry of complexes containing 1,2,3-triazolylidenes, 4-imidazolylidenes, and related 5-membered N-heterocyclic carbenes with reduced heteratom stabilization such as (is)oxazolylidenes, pyrrazolylidenes, and thiazolylidenes, as well as pyridylidenes as 6-membered N-heterocyclic carbenes with reduced heteroatom stabilization. For each ligand subclass, metalation strategies, electronic and steric properties, and applications, in particular, in metal-mediated catalysis, are compiled. Mesoionic carbenes demonstrate particularly high activity in (water) oxidation, hydrogen transfer reactions, and cyclization reactions. Unique features of these ligands are identified such as their dipolar structure, their specific donor properties, as well as stability aspects of the ligand and the complexes, which provides opportunities for further research.
Collapse
Affiliation(s)
- Ángela Vivancos
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Departamento de Química Inorgánica , Universidad de Murcia , Apartado 4021 , 30071 Murcia , Spain
| | - Candela Segarra
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Instituto de Tecnología Química , Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n , 46022 Valencia , Spain
| | - Martin Albrecht
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland
| |
Collapse
|
22
|
Robinson MP, Lloyd-Jones GC. Au-Catalyzed Oxidative Arylation: Chelation-Induced Turnover of ortho-Substituted Arylsilanes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Matthew P. Robinson
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K
| |
Collapse
|
23
|
Yip SJ, Kawakami T, Murakami K, Itami K. Gold-Catalyzed C−H Imidation of Polycyclic Aromatic Hydrocarbons. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shu Jan Yip
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Takahiro Kawakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kei Murakami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
- JST-ERATO Itami Molecular Nanocarbon Project; Nagoya University; Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
24
|
Morita T, Yugandar S, Fuse S, Nakamura H. Recent progresses in the synthesis of functionalized isoxazoles. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Shibata M, Ito H, Itami K. C–H Arylation of Phenanthrene with Trimethylphenylsilane by Pd/o-Chloranil Catalysis: Computational Studies on the Mechanism, Regioselectivity, and Role of o-Chloranil. J Am Chem Soc 2018; 140:2196-2205. [DOI: 10.1021/jacs.7b11260] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mari Shibata
- Graduate School of Science, ‡JST-ERATO, Itami Molecular Nanocarbon Project and §Institute of Transformative
Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, ‡JST-ERATO, Itami Molecular Nanocarbon Project and §Institute of Transformative
Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, ‡JST-ERATO, Itami Molecular Nanocarbon Project and §Institute of Transformative
Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Akram MO, Banerjee S, Saswade SS, Bedi V, Patil NT. Oxidant-free oxidative gold catalysis: the new paradigm in cross-coupling reactions. Chem Commun (Camb) 2018; 54:11069-11083. [DOI: 10.1039/c8cc05601c] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The construction of C–C and C–X (X = hetero atom) bonds is the core aspect for the assembly of molecules. This feature article critically presents an overview of all the redox neutral cross-coupling reactions enabled by gold catalysis, which we believe would stimulate further research activities in this promising area.
Collapse
Affiliation(s)
- Manjur O. Akram
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Somsuvra Banerjee
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune 411 008
- India
| | - Sagar S. Saswade
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Vaibhav Bedi
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| | - Nitin T. Patil
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal – 462 066
- India
| |
Collapse
|
27
|
Shibata M, Ito H, Itami K. Oxidative Homocoupling Reaction of Aryltrimethylsilanes by Pd/o-Chloranil Catalysis. CHEM LETT 2017. [DOI: 10.1246/cl.170723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mari Shibata
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
- JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, Aichi 464-8602
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8602
| |
Collapse
|
28
|
Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat Commun 2017; 8:565. [PMID: 28924193 PMCID: PMC5603523 DOI: 10.1038/s41467-017-00672-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
The reluctance of gold to achieve oxidative addition reaction is considered as an intrinsic limitation for the development of gold-catalyzed cross-coupling reactions with simple and ubiquitous aryl halide electrophiles. Here, we report the rational construction of a Au(I)/Au(III) catalytic cycle involving a sequence of Csp2–X oxidative addition, Csp2–H auration and reductive elimination, allowing a gold-catalyzed direct arylation of arenes with aryl halides. Key to this discovery is the use of Me-Dalphos, a simple ancillary (P,N) ligand, that allows the bottleneck oxidative addition of aryl iodides and bromides to readily proceed under mild conditions. The hemilabile character of the amino group plays a crucial role in this transformation, as substantiated by density functional theory calculations. Catalysis involving Au(I)/Au(III) cycles are notoriously hampered by the reluctance of Au(I) towards oxidative addition. Here, the authors show that an hemilabile bidentate ligand promotes oxidative addition of aryl halides to Au(I) and the catalytic formation of biaryl coupling products.
Collapse
|
29
|
Formal Synthesis of (±)-Allocolchicine Via Gold-Catalysed Direct Arylation: Implication of Aryl Iodine(III) Oxidant in Catalyst Deactivation Pathways. Top Catal 2017; 60:570-579. [PMID: 32025176 PMCID: PMC6979697 DOI: 10.1007/s11244-017-0742-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract A concise formal synthesis of racemic allocolchicine has been developed, centred on three principal transformations: a retro-Brook alkylation reaction to generate an arylsilane, a gold-catalysed arylative cyclisation to generate the B-ring via biaryl linkage, and a palladium-catalysed carbonylation of an aryl chloride to generate an ester. 1H NMR monitoring of the key gold-catalysed cyclisation step reveals that a powerful catalyst deactivation process progressively attenuates the rate of catalyst turnover. The origins of the catalyst deactivation have been investigated, with an uncatalysed side-reaction, involving the substrate and the iodine(III) oxidant, identified as the source of a potent catalyst poison. The side reaction generates 1–4% of a diaryliodonium salt, and whilst this moiety is shown not to be an innate catalyst deactivator, when it is tethered to the arylsilane reactant, the inhibition becomes powerful. Kinetic modelling of processes run at two different catalyst concentrations allows extraction of the partitioning of the gold catalyst between the substrate and its diaryliodonium salt, with a rate of diaryliodonium salt generation consistent with that independently determined in the absence of catalyst. The high partition ratio between substrate and diaryliodonium salt (5/1) results in very efficient, and ultimately complete, diversion of the catalyst off-cycle. Graphical Abstract ![]()
Collapse
|
30
|
Gauchot V, Sutherland DR, Lee AL. Dual gold and photoredox catalysed C-H activation of arenes for aryl-aryl cross couplings. Chem Sci 2017; 8:2885-2889. [PMID: 28553527 PMCID: PMC5427993 DOI: 10.1039/c6sc05469b] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/26/2017] [Indexed: 01/26/2023] Open
Abstract
A mild and fully catalytic aryl-aryl cross coupling via gold-catalysed C-H activation has been achieved by merging gold and photoredox catalysis. The procedure is free of stoichiometric oxidants and additives, which were previously required in gold-catalysed C-H activation reactions. Exploiting dual gold and photoredox catalysis confers regioselectivity via the crucial gold-catalysed C-H activation step, which is not present in the unselective photocatalysis-only counterpart.
Collapse
Affiliation(s)
- V Gauchot
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , UK .
| | - D R Sutherland
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , UK .
| | - A-L Lee
- Institute of Chemical Sciences , Heriot-Watt University , Edinburgh EH14 4AS , Scotland , UK .
| |
Collapse
|
31
|
Sarpong R. C-H Functionalization/activation in organic synthesis. Beilstein J Org Chem 2017; 12:2315-2316. [PMID: 28144298 PMCID: PMC5238585 DOI: 10.3762/bjoc.12.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, 841A Latimer Hall, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Corrie TJA, Ball LT, Russell CA, Lloyd-Jones GC. Au-Catalyzed Biaryl Coupling To Generate 5- to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus π-Complexation. J Am Chem Soc 2016; 139:245-254. [DOI: 10.1021/jacs.6b10018] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tom J. A. Corrie
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Liam T. Ball
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
33
|
Hofer M, Genoux A, Kumar R, Nevado C. Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manuel Hofer
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Alexandre Genoux
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Roopender Kumar
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Cristina Nevado
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
34
|
Hofer M, Genoux A, Kumar R, Nevado C. Gold-Catalyzed Direct Oxidative Arylation with Boron Coupling Partners. Angew Chem Int Ed Engl 2016; 56:1021-1025. [DOI: 10.1002/anie.201610457] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Manuel Hofer
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Alexandre Genoux
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Roopender Kumar
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Cristina Nevado
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
35
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Cresswell AJ, Lloyd-Jones GC. Room-Temperature Gold-Catalysed Arylation of Heteroarenes: Complementarity to Palladium Catalysis. Chemistry 2016; 22:12641-5. [PMID: 27325239 DOI: 10.1002/chem.201602893] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/10/2023]
Abstract
Tailoring of the pre-catalyst, the oxidant and the arylsilane enables the first room-temperature, gold-catalysed, innate C-H arylation of heteroarenes. Regioselectivity is consistently high and, in some cases, distinct from that reported with palladium catalysis. Tolerance to halides and boronic esters, in both the heteroarene and silane partners, provides orthogonality to Suzuki-Miyaura coupling.
Collapse
Affiliation(s)
- Alexander J Cresswell
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3JJ, UK
| | - Guy C Lloyd-Jones
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3JJ, UK.
| |
Collapse
|