1
|
D'Andrea F, Sartini S, Piano I, Franceschi M, Quattrini L, Guazzelli L, Ciccone L, Orlandini E, Gargini C, La Motta C, Nencetti S. Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. J Enzyme Inhib Med Chem 2021; 35:1194-1205. [PMID: 32396745 PMCID: PMC7269086 DOI: 10.1080/14756366.2020.1763331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aldose reductase is a key enzyme in the development of long term diabetic complications and its inhibition represents a viable therapeutic solution for people affected by these pathologies. Therefore, the search for effective aldose reductase inhibitors is a timely and pressing challenge. Herein we describe the access to a novel class of oxyimino derivatives, obtained by reaction of a 1,5-dicarbonyl substrate with O-(arylmethyl)hydroxylamines. The synthesised compounds proved to be active against the target enzyme. The best performing inhibitor, compound (Z)-8, proved also to reduce both cell death and the apoptotic process when tested in an in vitro model of diabetic retinopathy made of photoreceptor-like 661w cell line exposed to high-glucose medium, counteracting oxidative stress triggered by hyperglycaemic conditions.
Collapse
Affiliation(s)
| | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Pisa, Italy.,Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
2
|
Cuffaro D, Landi M, D'Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019; 482:107744. [PMID: 31306898 DOI: 10.1016/j.carres.2019.107744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
Iminosugars are known glycosidase inhibitors which are the subject of drug development efforts against several diseases. The access to structurally-related families of iminosugars is of primary importance for running structure-activity relationship studies. In this work, the double reductive amination (aminocyclization) reaction of a dicarbonyl derivative of the l-arabino series, in turn obtained from lactose, is reported. Different ratios of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives were obtained depending on the amine employed in this transformation which provided an insight into the effects of their structure on the outcome of the reaction. Of particular interest were the results obtained when two enantiomeric amino acids (d-Phe-OMe and l-Phe-OMe) were used, which resulted in the inversion of the reaction stereoselectivity.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Martina Landi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| |
Collapse
|
3
|
Catelani G, D'Andrea F, Guazzelli L, Griselli A, Testi N, Chiacchio MA, Legnani L, Toma L. Synthesis and conformational analysis of a simplified inositol-model of the Streptococcus pneumoniae 19F capsular polysaccharide repeating unit. Carbohydr Res 2017; 443-444:29-36. [PMID: 28324771 DOI: 10.1016/j.carres.2017.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/27/2022]
Abstract
Carbohydrate mimics have been studied for a long time as useful sugar substitutes, both in the investigation of biological events and in the treatment of sugar-related diseases. Here we report further evaluation of the capabilities of inositols as carbohydrate substitutes. The conformational features of an inositol-model of a simplified repeating unit corresponding to the capsular polysaccharide of Streptococcus pneumoniae 19F has been evaluated by computational analysis, and compared to the native repeating unit. The inositol mimic was synthesized, and its experimental spectroscopic data allowed for verification of the theoretical results.
Collapse
Affiliation(s)
- Giorgio Catelani
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D'Andrea
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy.
| | - Alessio Griselli
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Nicola Testi
- Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa, Italy
| | - Maria Assunta Chiacchio
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Legnani
- Università di Catania, Dipartimento di Scienze del Farmaco, V.le A. Doria 6, 95125 Catania, Italy; Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| | - Lucio Toma
- Università di Pavia, Dipartimento di Chimica, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|