1
|
Truong MA, Morishita S, Noguchi K, Nakano K. The Synthesis and Properties of Ladder-Type π-Conjugated Compounds with Pyrrole and Phosphole Rings. Molecules 2023; 29:38. [PMID: 38202617 PMCID: PMC10779499 DOI: 10.3390/molecules29010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The phosphole ring is known as a useful building block for constructing π-conjugated organic materials. Here, we report ladder-type benzophospholo[3,2-b]indole (BPI) derivatives where the phosphole and the pyrrole rings are directly fused. Compounds 8a-8d with different aryl groups on the phosphorous center were successfully synthesized, and the solid-state structure of 8a was confirmed using X-ray crystallographic analysis. The BPIs exhibit relatively high fluorescence quantum yield (Φ 0.50-0.72) and demonstrate a larger Stokes shift compared with a series of benzophospholo[3,2-b]benzoheteroles. The benzophospholo[3,2-b]carbazole derivative 9, which possesses a benzene ring between the phosphole and the pyrrole rings of the BPI, was also synthesized, and its solid-state structure was confirmed using X-ray crystallographic analysis. Compound 9 was found to show a smaller Stokes shift compared with the BPI.
Collapse
Affiliation(s)
- Minh Anh Truong
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; (M.A.T.); (S.M.)
| | - Suzuho Morishita
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; (M.A.T.); (S.M.)
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan;
| | - Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; (M.A.T.); (S.M.)
| |
Collapse
|
2
|
König N, Godínez-Loyola Y, Yang F, Laube C, Laue M, Lönnecke P, Strassert CA, Hey-Hawkins E. Facile modification of phosphole-based aggregation-induced emission luminogens with sulfonyl isocyanates. Chem Sci 2023; 14:2267-2274. [PMID: 36873851 PMCID: PMC9977459 DOI: 10.1039/d3sc00308f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Phosphole oxides undergo a highly chemoselective reaction with sulfonyl isocyanates forming sulfonylimino phospholes in high yields. This facile modification proved to be a powerful tool for obtaining new phosphole-based aggregation-induced emission (AIE) luminogens with high fluorescence quantum yields in the solid state. Changing the chemical environment of the phosphorus atom of the phosphole framework results in a significant shift of the fluorescence maximum to longer wavelengths.
Collapse
Affiliation(s)
- Nils König
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Yokari Godínez-Loyola
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Fangshun Yang
- Leibniz-Institut für Oberflächenmodifizierung e.V. Permoserstrasse 15 04318 Leipzig Germany
| | - Christian Laube
- Leibniz-Institut für Oberflächenmodifizierung e.V. Permoserstrasse 15 04318 Leipzig Germany
| | - Michael Laue
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Organic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Johannisallee 29 04103 Leipzig Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Johannisallee 29 04103 Leipzig Germany
| |
Collapse
|
3
|
D'Imperio N, Pelliccioli V, Grecchi S, Bossi A, Vasile F, Cauteruccio S, Arkhypchuk AI, Kumar Gupta A, Orthaber A, Ott S, Licandro E. Highly Conjugated Bis(benzo[
b
]phosphole)‐
P
‐oxides: Synthesis and Electrochemical, Optical, and Computational Studies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas D'Imperio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Valentina Pelliccioli
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Sara Grecchi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” Consiglio Nazionale delle Ricerche (CNR-SCITEC) Via Fantoli 16/15 20138 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| | - Francesca Vasile
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Silvia Cauteruccio
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Anna I. Arkhypchuk
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Arvind Kumar Gupta
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory Uppsala University Box 523 751 20 Uppsala Sweden
| | - Emanuela Licandro
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
- SmartMatLab Center via Golgi 19 I-20133 Milano Italy
| |
Collapse
|
4
|
Klintuch D, Höfler MV, Wissel T, Bruhn C, Gutmann T, Pietschnig R. Trifunctional Silyl Groups as Anchoring Units in the Preparation of Luminescent Phosphole-Silica Hybrids. Inorg Chem 2021; 60:14263-14274. [PMID: 34492179 DOI: 10.1021/acs.inorgchem.1c01775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic strategy to β-silylphospholes with three methoxy, ethoxy, chloro, hydrido, or phenyl substituents at silicon has been developed, starting from trimethoxy, triethoxy, or triphenyl silyl substituted phenyl phosphanides and 1,4-diphenyl-1,3-butadiyne. These trifunctional silylphospholes were attached to the surface of uniform spheric silica particles (15 μm) and, for comparison, to a polyhedral silsesquioxane (POSS)-trisilanol as a molecular model to explore their luminescent properties in comparison with the free phospholes. Density functional theory calculations were performed to investigate any electronic perturbation of the phosphole system by the trifunctional silyl anchoring unit. For the immobilized phospholes, cross-polarization magic-angle-spinning NMR measurements (13C, 29Si, and 31P) were carried out to explore the bonding situation to the silica surface. Thermogravimetric analysis and X-ray photoelectron spectroscopy measurements were performed to approximate the amount of phospholes covering the silica surface. Identity and purity of all novel phospholes have been established with standard techniques (multinuclear NMR, mass spectrometry, and elemental analysis) and X-ray diffraction for the POSS derivative.
Collapse
Affiliation(s)
- Dieter Klintuch
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| | - Mark V Höfler
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Till Wissel
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Clemens Bruhn
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| | - Torsten Gutmann
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany.,Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical Universität (TU) Darmstadt, Alarich-Weiss Straße 8, Darmstadt 64287, Germany
| | - Rudolf Pietschnig
- Institute for Chemistry and CINSaT, Universität Kassel, Heinrich Plett-Straße 40, Kassel 34132, Germany
| |
Collapse
|
5
|
Guo J, Mao C, Deng B, Ye L, Yin Y, Gao Y, Tu S. Azobisisobutyronitrile-Initiated Oxidative C-H Functionalization of Simple Alcohols with Diaryl(arylethynyl)phosphine Oxides: A Metal-Free Approach toward Hydroxymethyl Benzo[ b]phosphole Oxides and 6 H-Indeno[2,1- b]phosphindole 5-Oxide Derivatives. J Org Chem 2020; 85:6359-6371. [PMID: 32299209 DOI: 10.1021/acs.joc.0c00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first metal-free and facile radical addition/cyclization of simple alcohols with diaryl(arylethynyl)phosphine oxides has been described with azobisisobutyronitrile as a radical initiator, affording an efficient and one-pot procedure to access a new class of hydroxymethyl benzo[b]phosphole oxides and 6H-indeno[2,1-b]phosphindole 5-oxides for potential application in organic materials via sequential C(sp3)-H/C(sp2)-H functionalization. The method employs easily accessible starting materials and is endowed with high regioselectivity and broad functional-group tolerance.
Collapse
Affiliation(s)
- Jiami Guo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Chenlu Mao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Bin Deng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Liyi Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
6
|
Parke SM, Tanaka S, Yu H, Hupf E, Ferguson MJ, Zhou Y, Naka K, Rivard E. Highly Fluorescent Benzophosphole Oxide Block-Copolymer Micelles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sarah M. Parke
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haoyang Yu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Emanuel Hupf
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J. Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Wu D, Zheng J, Xu C, Kang D, Hong W, Duan Z, Mathey F. Phosphindole fused pyrrolo[3,2-b]pyrroles: a new single-molecule junction for charge transport. Dalton Trans 2019; 48:6347-6352. [PMID: 30994138 DOI: 10.1039/c9dt01299k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of phosphindole fused ladder-type heteroacenes with a pyrrolo[3,2-b]pyrrole core were synthesized and characterized, which show good luminescence efficiency, high thermostability and tunable conductance.
Collapse
Affiliation(s)
- Di Wu
- International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Nilewar S, Jayaraman A, Sterenberg BT. Alkyne Insertion into P–C(sp2) Bonds as a Route to Fused Phospholes: Transition-Metal-Like Reactivity at Phosphorus. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shrikant Nilewar
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Arumugam Jayaraman
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Brian T. Sterenberg
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
9
|
Ma D, Pan J, Yin L, Xu P, Gao Y, Yin Y, Zhao Y. Copper-Catalyzed Direct Oxidative C–H Functionalization of Unactivated Cycloalkanes into Cycloalkyl Benzo[b]phosphole Oxides. Org Lett 2018; 20:3455-3459. [DOI: 10.1021/acs.orglett.8b01108] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dumei Ma
- Department of Chemical and Biochemical Engineering, and ‡Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | | | - Lu Yin
- Department of Chemical and Biochemical Engineering, and ‡Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | | | | | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, and ‡Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | | |
Collapse
|