1
|
Lebedeva NS, Yurina ES, Kiselev AN, Lebedev MA, Syrbu SA. Features of the interaction of 5-[4'-(6″-aminopurin-2″-yl)phenyl]-10,15,20-tri(N-methylpyridin-3'-yl)-porphyrin with nucleic acids. Int J Biol Macromol 2024:139411. [PMID: 39743061 DOI: 10.1016/j.ijbiomac.2024.139411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Directed synthesis of novel water-soluble asymmetric porphyrins containing in a molecule three cationic fragments and residues of adenine (PorAD) was performed, using metal-complex catalysis method. The interaction of the synthesized porphyrin with the oligonucleotides poly[d(AT)2] and poly[d(GC)2] and double-stranded deoxyribonucleic acid of the calf thymus (ctDNA) was studied by means of spectral and hydrodynamic methods. It was established that PorAD intercalated not only into GC-enriched regions, but also into AT regions. It was revealed that a distinctive feature of PorAD complexes with nucleic acids was a weak shielding from water molecules, and it implies significant disturbances in the conformation of the nucleic acid; the disturbances being especially pronounced for poly[d(AT)2].
Collapse
Affiliation(s)
- Natalia Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | - Elena S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia.
| | - Aleksey N Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Mikhail A Lebedev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | - Sergey A Syrbu
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| |
Collapse
|
2
|
Qamar M, Shafiullah, Sultanat, Lal H, Rizvi A, Farhan M. Synthesis, characterisation, and in vitro antiparasitic activity of new flavanoidal tetrazinan-6'-ones and their binding study with calf thymus DNA using molecular modelling and spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124757. [PMID: 38959688 DOI: 10.1016/j.saa.2024.124757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
With the developing resistance to traditional antiparasitic medications, the purpose of this study was to efficiently develop a series of six noble flavanoidal tetrazinane-6'-one derivatives by a one-pot reaction pathway. FT-IR, 1HNMR, 13CNMR, and Mass spectra were employed for the structural elucidation of the synthesized compounds (7-12). Clinostomum complanatum, a parasite infection model that has been well-established, demonstrated that all the synthesized compounds are potent antiparasitic agents. DNA is the main target for various medicinal compounds. As a result, thestudy of how small molecules attach to DNA has received a lot of attention. In the present study, we have performed various biophysical techniques to determine the mode of binding of synthesized compounds (7-12) with calf thymus DNA (ct-DNA). It was observed from the UV-visible absorbance and fluorescence spectra that all synthesized compounds (7-12) form complexes with the ct-DNA. The value of binding constant (Kb) was obtained to be in the range of 4.36---24.50 × 103 M - 1 at 298 K. Competitive displacement assay with ethidium bromide (EB), CD spectral analysis, viscosity measurements, and in silico molecular docking confirmed that ligands (7-12) incorporate with ct-DNA through groove binding only. Molecular docking studies were performed for all synthesized compounds with the calf thymus DNA and it was found that all the newly synthesized compounds strongly bind with the chain B of DNA in the minor groove with the value of binding energy in the range of -8.54 to -9.04 kcal per mole and several hydrogen bonding interactions.
Collapse
Affiliation(s)
- Mohd Qamar
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Shafiullah
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002.
| | - Sultanat
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Hira Lal
- Department of Chemistry, Aligarh Muslim University Aligarh, India, 202002
| | - Asim Rizvi
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
He L, She L, Wang L, Mi C, Ma K, Yu M, Long X, Zhang C. The electric regulation mechanism of drug molecules intercalating with DNA. Arch Biochem Biophys 2024; 762:110203. [PMID: 39489204 DOI: 10.1016/j.abb.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The insertion of small drug molecules into DNA can change its electrical properties, thereby controlling the probability of its electrical transmission. This characteristic has enabled its widespread application in molecular electronics. However, the current understanding of the intercalation properties and electronic transmission mechanisms is still not deep enough, which severely restricts its practical application. In this paper, the density functional theory and the non-equilibrium Green's function formula are combined to bind three different small drug molecules to the same sequence of DNA through intercalation, in order to discuss the impact of intercalation and molecular structure on the electrical properties of DNA. After inserting two MAR70 molecules, the conductivity decreased from 2.38×10-5 G0 to 3.37×10-7 G0 . Upon the insertion of Nogalamycin, the conductivity dropped to 2.01×10-5 G0, only slightly lower than that of bare B-DNA. However, when cyanomorpholinodoxorubicin was inserted, the conductivity was 2.65×10-6 G0. In our study, we observed some common characteristics. After intercalating with drug molecules, new energy levels were induced, altering the positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels, resulting in a narrowed bandgap and consequently reduced conductivity of the complex. Furthermore, the conductivity was also related to the number of inserted drug molecules, fewer inserted molecules led to a decrease in conductivity. The results of this study indicate that embedding drug molecules can reduce or regulate the conductivity of DNA, providing new insights for its application in the field of nanoelectronics.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China.
| | - Liang She
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Liyan Wang
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| | - Cheng Mi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Kang Ma
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Mi Yu
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Integrated Circuit Collaborative Innovation Center, No. 36 Xiyong Avenue, Shapingba District, Chongqing 400065, China
| |
Collapse
|
4
|
Gentile M, Talotta F, Tremblay JC, González L, Monari A. Predominant Binding Mode of Palmatine to DNA. J Phys Chem Lett 2024; 15:10570-10575. [PMID: 39401411 DOI: 10.1021/acs.jpclett.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Palmatine is a protoberberine alkaloid, which may produce singlet oxygen under visible light irradiation and binds to DNA. The fact that singlet oxygen activation in palmatine may be triggered by environmental conditions, and in particular its interaction with nucleic acids, makes it a most suitable candidate for photodynamic therapy and DNA-targeted noninvasive anticancer strategies. Despite these remarkable properties, the actual binding mode between palmatine and DNA has not been resolved, yet. Its elucidation has indeed led to contrasting hypotheses. In this contribution, by using long-range molecular dynamic simulations and enhanced sampling approaches, we unequivocally identify that intercalation is the dominant binding mode of palmatine with DNA, from both a thermodynamic and kinetic point of view.
Collapse
Affiliation(s)
- Marziogiuseppe Gentile
- LPCT, Université de Lorraine, 57000 Metz, France
- Institut für Theoretische Chemie, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1190 Vienna, Austria
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | | | | | - Leticia González
- Institut für Theoretische Chemie, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1190 Vienna, Austria
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, 75006 Paris, France
| |
Collapse
|
5
|
Morcos A, Jung Y, Galvan Bustillos J, Fuller RN, Caba Molina D, Bertucci A, Boyle KE, Vazquez ME, Wall NR. A Comprehensive Review of the Antitumor Properties and Mechanistic Insights of Duocarmycin Analogs. Cancers (Basel) 2024; 16:3293. [PMID: 39409913 PMCID: PMC11475672 DOI: 10.3390/cancers16193293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The duocarmycin family is a group of potent cytotoxic agents originally isolated from the bacterium Streptomyces. This discovery has spurred significant interest due to duocarmycins' unique chemical structures and powerful mechanism of action. This review comprehensively details the history of the duocarmycin family, the current understanding of their therapeutic potential, and the major clinical trials that have been conducted. Chemically, the duocarmycin family is characterized by a DNA-binding unit that confers specificity, a subunit-linking amide that positions the molecule within the DNA helix, and an alkylating unit that interacts with the DNA. This configuration allows them to bind selectively to the minor groove of DNA and alkylate adenine bases, a notable deviation from the more common guanine targeting performed by other alkylating agents. Duocarmycin's mechanism of action involves the formation of covalent adducts with DNA, leading to the disruption of the DNA architecture and subsequent inhibition of replication and transcription. Recent advancements in drug delivery systems, such as antibody-drug conjugates (ADCs), have further elevated the therapeutic prospects of duocarmycin analogs by providing a promising mechanism for enhancing intracellular concentrations and selective tumor delivery. Preclinical studies have highlighted the efficacy of duocarmycin derivatives in various in vitro models, providing a strong foundation for translational research. However, further biological research is required to fully understand the toxicology of duocarmycin family members before it can be clinically relevant. The major focus of this review is to cache the major biologically relevant findings of different duocarmycin analogs as well as their biological shortcomings to propose next steps in the field of cancer therapy with these potent therapeutics.
Collapse
Affiliation(s)
- Ann Morcos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Yeonkyu Jung
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Ryan N. Fuller
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University Health, Loma Linda, CA 92350, USA;
| | - Antonella Bertucci
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Nuclear Response & Analysis, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | | | - Marcelo E. Vazquez
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Radiobiology & Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Nathan R. Wall
- Department of Radiation Medicine, James M. Slater, MD Proton Treatment & Research Center, Loma Linda University Health, Loma Linda, CA 92350, USA
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Shinziya H, Menon RS, Das AK. A rapid investigation of near-infrared (NIR) fluorescent switch-on probes for detection and in cellulo tracking of G-quadruplex and double-stranded DNA. RSC Adv 2024; 14:30631-30646. [PMID: 39324042 PMCID: PMC11423286 DOI: 10.1039/d4ra06207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
This review provides a comprehensive overview of the recent advancements in Near Infrared (NIR) fluorescence switch-on probes designed for the detection and in cellulo tracking of G-quadruplex and double-stranded DNA (dsDNA). G-quadruplexes, non-canonical DNA structures, play pivotal roles in regulating various biological processes, making them critical targets for therapeutic and diagnostic applications. The unique properties of NIR fluorescence probes, such as deep tissue penetration, minimal photodamage, and low autofluorescence background, offer significant advantages for bioimaging. We critically analyze the design strategies, photophysical properties, and binding mechanisms of various NIR fluorescence switch-on probes. Additionally, we discuss their efficacy and specificity in identifying G-quadruplexes and dsDNA within cellular environments. Key challenges and future directions for improving the sensitivity, selectivity, and biocompatibility of these probes are also highlighted. This review aims to underscore the potential of NIR fluorescence probes in advancing our understanding of DNA dynamics and their applications in biomedical research.
Collapse
Affiliation(s)
- Hazeena Shinziya
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Revathi S Menon
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Avijit Kumar Das
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| |
Collapse
|
7
|
Yang A, Song J, Li J, Li Y, Bai S, Zhou C, Wang M, Zhou Y, Wen K, Luo M, Chen P, Liu B, Yang H, Bai Y, Wong WL, Cai Q, Pu H, Qian Y, Hu W, Huang W, Wan M, Zhang C, Feng X. Ligand-Receptor Interaction-Induced Intracellular Phase Separation: A Global Disruption Strategy for Resistance-Free Lethality of Pathogenic Bacteria. J Am Chem Soc 2024; 146:23121-23137. [PMID: 38980064 DOI: 10.1021/jacs.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peiren Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
8
|
Huang Z, Braunstein Z, Chen J, Wei Y, Rao X, Dong L, Zhong J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol Rev 2024; 76:579-598. [PMID: 38622001 DOI: 10.1124/pharmrev.123.001084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/25/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
In the era of precision medicine, antibody-drug conjugates (ADCs) have emerged as a cutting-edge therapeutic strategy. These innovative compounds combine the precision of monoclonal antibodies with the potent cell-killing or immune-modulating abilities of attached drug payloads. This unique strategy not only reduces off-target toxicity but also enhances the therapeutic effectiveness of drugs. Beyond their well established role in oncology, ADCs are now showing promising potential in addressing the unmet needs in the therapeutics of rheumatic diseases. Rheumatic diseases, a diverse group of chronic autoimmune diseases with varying etiologies, clinical presentations, and prognoses, often demand prolonged pharmacological interventions, creating a pressing need for novel, efficient, and low-risk treatment options. ADCs, with their ability to precisely target the immune components, have emerged as a novel therapeutic strategy in this context. This review will provide an overview of the core components and mechanisms behind ADCs, a summary of the latest clinical trials of ADCs for the treatment of rheumatic diseases, and a discussion of the challenges and future prospects faced by the development of next-generation ADCs. SIGNIFICANCE STATEMENT: There is a lack of efficient and low-risk targeted therapeutics for rheumatic diseases. Antibody-drug conjugates, a class of cutting-edge therapeutic drugs, have emerged as a promising targeted therapeutic strategy for rheumatic disease. Although there is limited literature summarizing the progress of antibody-drug conjugates in the field of rheumatic disease, updating the advancements in this area provides novel insights into the development of novel antirheumatic drugs.
Collapse
Affiliation(s)
- Zhiwen Huang
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Zachary Braunstein
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jun Chen
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Yingying Wei
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Xiaoquan Rao
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Lingli Dong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| | - Jixin Zhong
- Departments of Rheumatology and Immunology (Z.H., Y.W., L.D., J.Z.) and Cardiology (X.R.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Wexner Medical Center, The Ohio State University, Columbus, Ohio (Z.B.); Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China (J.C.); Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, China (J.Z.); and Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z.)
| |
Collapse
|
9
|
Schlosser J, Fedorova O, Fedorov Y, Ihmels H. Photoinduced in situ generation of DNA-targeting ligands: DNA-binding and DNA-photodamaging properties of benzo[ c]quinolizinium ions. Beilstein J Org Chem 2024; 20:101-117. [PMID: 38264449 PMCID: PMC10804566 DOI: 10.3762/bjoc.20.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
The photoreactions of selected styrylpyridine derivatives to the corresponding benzo[c]quinolizinium ions are described. It is shown that these reactions are more efficient in aqueous solution (97-44%) than in organic solvents (78-20% in MeCN). The quinolizinium derivatives bind to DNA by intercalation with binding constants of 6-11 × 104 M-1, as shown by photometric and fluorimetric titrations as well as by CD- and LD-spectroscopic analyses. These ligand-DNA complexes can also be established in situ upon irradiation of the styrylpyridines and formation of the intercalator directly in the presence of DNA. In addition to the DNA-binding properties, the tested benzo[c]quinolizinium derivatives also operate as photosensitizers, which induce DNA damage at relative low concentrations and short irradiation times, even under anaerobic conditions. Investigations of the mechanism of the DNA damage revealed the involvement of intermediate hydroxyl radicals and C-centered radicals. Under aerobic conditions, singlet oxygen only contributes to marginal extent to the DNA damage.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Olga Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Yuri Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, 119991 Moscow, Russia
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro- and Nanochemistry and (Bio)Technology (Cµ), University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
10
|
Grantham H, Lee RJ, Wardas GM, Mistry JR, Elsegood MRJ, Wright IA, Pritchard GJ, Kimber MC. Transition-Metal-Free Continuous-Flow Synthesis of 2,5-Diaryl Furans: Access to Medicinal Building Blocks and Optoelectronic Materials. J Org Chem 2024; 89:484-497. [PMID: 38143311 PMCID: PMC10777415 DOI: 10.1021/acs.joc.3c02237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
The direct transformation of 1,3-dienes into valuable 2,5-diarylfurans using transition-metal-free conditions is presented. By employing a simple oxidation─dehydration sequence on readily accessible 1,3-dienes, important 2,5-diarylfuran building blocks frequently used in medicinal and material chemistry are prepared. The oxidation step is realized using singlet oxygen, and the intermediate endoperoxide is dehydrated under metal-free conditions and at ambient temperature using the Appel reagent. Notably, this sequence can be streamlined into continuous flow, thereby eliminating the isolation of the intermediate, often unstable endoperoxide. This leads to a significant improvement in isolated yields (ca. 27% average increase) of the 2,5-diarylfurans while also increasing safety and reducing waste. Our transition-metal-free synthetic approach to 2,5-diarylfurans delivers several important furan building blocks used commonly in medicinal chemistry and as optoelectronic materials, including short-chain linearly conjugated furan oligomers. Consequently, we also complete a short study of the optical and electrochemical properties of a selection of these novel materials.
Collapse
Affiliation(s)
- Helena
F. Grantham
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Robert J. Lee
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Grzegorz M. Wardas
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Jai-Ram Mistry
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Mark R. J. Elsegood
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Iain A. Wright
- The
School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh EH9 3FJ, U.K.
| | - Gareth J. Pritchard
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| | - Marc C. Kimber
- Department
of Chemistry, School of Science, Loughborough
University, Loughborough LE11 3TU, U.K.
| |
Collapse
|
11
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-Specific Arrangement and Structure Determination of Minor Groove Binding Molecules in Self-Assembled Three-Dimensional DNA Crystals. J Am Chem Soc 2023; 145:26075-26085. [PMID: 37987645 PMCID: PMC10789492 DOI: 10.1021/jacs.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Alex Buchberger
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Skylar J W Henry
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Alexandra Novacek
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nour Eddine Fahmi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| |
Collapse
|
12
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
13
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-specific arrangement and structure determination of minor groove binding molecules in self-assembled three-dimensional DNA crystals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561756. [PMID: 37873139 PMCID: PMC10592734 DOI: 10.1101/2023.10.10.561756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an anti-parallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
|
14
|
Ogbonna E, Paul A, Farahat AA, Terrell JR, Mineva E, Ogbonna V, Boykin DW, Wilson WD. X-ray Structure Characterization of the Selective Recognition of AT Base Pair Sequences. ACS BIO & MED CHEM AU 2023; 3:335-348. [PMID: 37599788 PMCID: PMC10436263 DOI: 10.1021/acsbiomedchemau.3c00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 08/22/2023]
Abstract
The rational design of small molecules that target specific DNA sequences is a promising strategy to modulate gene expression. This report focuses on a diamidinobenzimidazole compound, whose selective binding to the minor groove of AT DNA sequences holds broad significance in the molecular recognition of AT-rich human promoter sequences. The objective of this study is to provide a more detailed and systematized understanding, at an atomic level, of the molecular recognition mechanism of different AT-specific sequences by a rationally designed minor groove binder. The specialized method of X-ray crystallography was utilized to investigate how the sequence-dependent recognition properties in general, A-tract, and alternating AT sequences affect the binding of diamidinobenzimidazole in the DNA minor groove. While general and A-tract AT sequences give a narrower minor groove, the alternating AT sequences intrinsically have a wider minor groove which typically constricts upon binding. A strong and direct hydrogen bond between the N-H of the benzimidazole and an H-bond acceptor atom in the minor groove is essential for DNA recognition in all sequences described. In addition, the diamidine compound specifically utilizes an interfacial water molecule for its DNA binding. DNA complexes of AATT and AAAAAA recognition sites show that the diamidine compound can bind in two possible orientations with a preference for water-assisted hydrogen bonding at either cationic end. The complex structures of AAATTT, ATAT, ATATAT, and AAAA are bound in a singular orientation. Analysis of the helical parameters shows a minor groove expansion of about 1 Å across all the nonalternating DNA complexes. The results from this systematic approach will convey a greater understanding of the specific recognition of a diverse array of AT-rich sequences by small molecules and more insight into the design of small molecules with enhanced specificity to AT and mixed DNA sequences.
Collapse
Affiliation(s)
- Edwin
N. Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ananya Paul
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Abdelbasset A. Farahat
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Master
of Pharmaceutical Sciences Program, California
North State University, 9700 W Taron Dr., Elk Grove, California 95757, United States
| | - J. Ross Terrell
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ekaterina Mineva
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Victor Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - David W Boykin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - W. David Wilson
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| |
Collapse
|
15
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand, part II: the influence of the substitution pattern. Org Biomol Chem 2023. [PMID: 37401249 DOI: 10.1039/d3ob00879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A disulfide-functionalized photoactive DNA ligand is presented that enables the control of its DNA-binding properties by a combination of a photocycloaddition reaction and the redox reactivity of the sulfide/disulfide functionalities. In particular, the initially applied ligand binds to DNA by a combination of intercalation and groove-binding of separate benzo[b]quinolizinium units. The association to DNA is interrupted by an intramolecular [4 + 4] photocycloaddition to the non-binding head-to-head cyclomers. In turn, the subsequent cleavage of these cyclomers with dithiothreitol (DTT) regains temporarily a DNA-intercalating benzoquinolizinium ligand that is eventually converted into a non-binding benzothiophene. As a special feature, this sequence of controlled deactivation, recovery and internal shut-off of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry - Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
16
|
Ressler AJ, Frate M, Hontoria A, Ream A, Timms E, Li H, Stettler LD, Bollinger A, Poor JE, Parra MA, Ma H, Seeram NP, Meschwitz SM, Henry GE. Synthesis, anti-ferroptosis, anti-quorum sensing, antibacterial and DNA interaction studies of chromene-hydrazone derivatives. Bioorg Med Chem 2023; 90:117369. [PMID: 37320993 DOI: 10.1016/j.bmc.2023.117369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Nineteen chromene-hydrazone derivatives containing a variety of structural modifications on the hydrazone moiety were synthesized. Structure-activity correlations were investigated to determine the influence of structural variations on anti-ferroptosis, anti-quorum sensing, antibacterial, DNA cleavage and DNA binding properties. Ferroptosis inhibitory activity was determined by measuring the ability of the derivatives to reverse erastin-induced ferroptosis. Several of the derivatives were more effective than fisetin at inhibiting ferroptosis, with the thiosemicarbazone derivative being the most effective. Quorum sensing inhibition was evaluated using Vibrio harveyi, and both V. harveyi and Staphylococcus aureus were used to determine antibacterial activity. The semicarbazone and benzensulfonyl hydrazone derivatives showed moderate quorum sensing inhibition with IC50 values of 27 μM and 22 μM, respectively, while a few aryl hydrazone and pyridyl hydrazone derivatives showed bacterial growth inhibition, with MIC values ranging from 3.9 to 125 μM. In addition, the interaction of the hydrazone derivatives with DNA was investigated by gel electrophoresis, UV-Vis spectroscopy and molecular docking. All of the derivatives cleaved plasmid DNA and showed favorable interaction with B-DNA through minor groove binding. Overall, this work highlights a broad range of pharmacological applications for chromene-hydrazone derivatives.
Collapse
Affiliation(s)
- Andrew J Ressler
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Marissa Frate
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Ana Hontoria
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Anna Ream
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Eliza Timms
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren D Stettler
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Ashton Bollinger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Jenna E Poor
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Michael A Parra
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Susan M Meschwitz
- Department of Chemistry, Salve Regina University, Newport, Rhode Island 02840, USA.
| | - Geneive E Henry
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
17
|
Mati SS, Chowdhury S, Sarkar S, Bera N, Sarkar N. Targeting genomic DNAs and oligonucleotide on base specificity: A comparative spectroscopic, computational and in vitro study. Int J Biol Macromol 2023:124933. [PMID: 37230444 DOI: 10.1016/j.ijbiomac.2023.124933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
Drug discovery in targeted nucleic acid therapeutics encompass several stages and rigorous challenges owing to less specificity of the DNA binders and high failure rate in different stages of clinical trials. In this perspective, we report newly synthesized ethyl 4-(pyrrolo[1,2-a]quinolin-4-yl)benzoate (PQN) with minor groove A-T base pair binding selectivity and encouraging in cell results. This pyrrolo quinolin derivative has shown excellent groove binding ability with three of our inspected genomic DNAs (cpDNA 73 % AT, ctDNA58% AT and mlDNA 28 % AT) with varying A-T and G-C content. Notably in spite of similar binding patterns PQN have strong binding preference with A-T rich groove of genomic cpDNA over the ctDNA and mlDNA. Spectroscopic experiments like steady state absorption and emission results have established the relative binding strengths (Kabs = 6.3 × 105 M-1, 5.6 × 104 M-1, 4.3 × 104 M-1 and Kemiss = 6.1 × 105 M-1, 5.7 × 104 M-1 and 3.5 × 104 M-1 for PQN-cpDNA, PQN-ctDNA and PQN-mlDNA respectively) whereas circular dichroism and thermal melting studies have unveiled the groove binding mechanism. Specific A-T base pair attachment with van der Waals interaction and quantitative hydrogen bonding assessment were characterized by computational modeling. In addition to genomic DNAs, preferential A-T base pair binding in minor groove was also observed with our designed and synthesized deca-nucleotide (primer sequences 5/-GCGAATTCGC-3/ and 3/-CGCTTAAGCG-5/). Cell viability assays (86.13 % in 6.58 μM and 84.01 % in 9.88 μM concentrations) and confocal microscopy revealed low cytotoxicity (IC50 25.86 μM) and efficient perinuclear localization of PQN. We propose PQN with excellent DNA-minor groove binding capacity and intracellular permeation properties, as a lead for further studies encompassing nucleic acid therapeutics.
Collapse
Affiliation(s)
- Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, Paschim Medinipur,WB 721135, India.
| | - Sourav Chowdhury
- Structural Biology and Bio-informatics division, CSIR Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Soumen Sarkar
- Department of Chemistry, Balurghat College, Dakshin Dinajpur, WB 733101, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Paschim Medinipur, WB 721302, India.
| |
Collapse
|
18
|
Zaremba AA, Zaremba PY, Zahorodnia SD. In silico study of HASDI (high-affinity selective DNA intercalator) as a new agent capable of highly selective recognition of the DNA sequence. Sci Rep 2023; 13:5395. [PMID: 37012345 PMCID: PMC10070485 DOI: 10.1038/s41598-023-32595-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer as an acquired genetic disease is based on changes both in the genome itself and in transcription processes. Accordingly, it is at the DNA level that it makes sense to search for and design agents capable of effective and selective anticancer action. In this study, we used an iterative approach based on a molecular dynamics simulation to design a highly selective DNA-intercalating agent called HASDI. To confirm its selective affinity to DNA, we conducted two simulation experiments: HASDI in a complex with a DNA fragment of the EBNA1 gene (it targets 16 nucleotide pairs of this gene) and HASDI in a complex with a random DNA fragment of the KCNH2 gene. The molecular dynamics simulation was carried out in the GROMACS 2019 package. The binding energy was calculated by gmx_MMPBSA 1.5.2. The further analysis was performed using the built-in utilities of GROMACS, gmx_MMPBSA and also XMGRACE and Pymol 1.8. As a result, we determined that the EBNA1-50nt/HASDI complex was stable throughout the whole simulation trajectory. HASDI, due to the presence of a linker modified depending on a specific pair of nitrogenous bases, formed an average of 32 hydrogen bonds with a sequence of 16 nucleotide pairs. Phenazine rings were stably intercalated every 2 base pairs. The root-mean-square deviation of HASDI in such a complex fluctuated around the value of 6.5 Å and had no tendency to increase. The calculated value of the binding free energy was - 235.3 ± 7.77 kcal/mol. The KCNH2-50nt/HASDI complex, as an example of the intercalation of the designed structure into a random part of the human genome, maintained the stability of its position at a level comparable to the EBNA1-50nt/HASDI complex. The phenazine rings were constantly intercalated in their original positions, and the root-mean-square deviation fluctuated around one value, although it had a tendency to chaotic changes. At the same time, this complex was characterized by 17-19 hydrogen bonds, on average, and the binding free energy was - 193.47 ± 14.09 kcal/mol. Moreover, the DNA duplex had local single-nucleotide melting in the region of the 4th linker. According to a significant decrease in the number of hydrogen bonds, a decrease in energy gain, as well as a decrease in the stability of the DNA duplex characteristic of the KCNH2-50nt/HASDI complex compared to the target EBNA1-50nt/HASDI complex, the molecule we designed can be considered a potentially selective DNA polyintercalating agent capable of relatively accurate recognition of 16 base pairs.
Collapse
Affiliation(s)
- Andrii A Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine.
| | - Polina Yu Zaremba
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| | - Svitlana D Zahorodnia
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny Str., Kyiv, 03143, Ukraine
| |
Collapse
|
19
|
Dohmen C, Ihmels H. Switching between DNA binding modes with a photo- and redox-active DNA-targeting ligand. Org Biomol Chem 2023; 21:1958-1966. [PMID: 36762516 DOI: 10.1039/d3ob00013c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A disulfide-functionalized bis-benzo[b]quinolizinium is presented that is transformed quantitatively into its cyclomers in a fast intramolecular [4 + 4] photocycloaddition. Both the bis-quinolizinium and the photocyclomers react with glutathione (GSH) or dithiothreitol (DTT) to give 9-(sulfanylmethyl)benzo[b]quinolizinium as the only product. As all components of this reaction sequence have different DNA-binding properties, it enables the external control and switching of DNA association. Hence, the bis-benzo[b]quinolizinium binds strongly to DNA and is deactivated upon photocycloaddition to the non-binding cyclomers. In turn, the subsequent cleavage of the cyclomers with DTT regains a DNA-intercalating benzoquinolizinium ligand. Notably, this sequence of controlled deactivation and recovery of DNA-binding properties can be performed directly in the presence of DNA.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| |
Collapse
|
20
|
DNA sequence-specific ligands. XX. Synthesis, spectral properties, virological and biochemical studies of fluorescent dimeric trisbenzimidazoles DB3P(n). Med Chem Res 2023. [DOI: 10.1007/s00044-023-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Lee YT, Tan YJ, Oon CE. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm Sin B 2023; 13:478-497. [PMID: 36873180 PMCID: PMC9978992 DOI: 10.1016/j.apsb.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is the second leading cause of mortality globally which remains a continuing threat to human health today. Drug insensitivity and resistance are critical hurdles in cancer treatment; therefore, the development of new entities targeting malignant cells is considered a high priority. Targeted therapy is the cornerstone of precision medicine. The synthesis of benzimidazole has garnered the attention of medicinal chemists and biologists due to its remarkable medicinal and pharmacological properties. Benzimidazole has a heterocyclic pharmacophore, which is an essential scaffold in drug and pharmaceutical development. Multiple studies have demonstrated the bioactivities of benzimidazole and its derivatives as potential anticancer therapeutics, either through targeting specific molecules or non-gene-specific strategies. This review provides an update on the mechanism of actions of various benzimidazole derivatives and the structure‒activity relationship from conventional anticancer to precision healthcare and from bench to clinics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
22
|
He L, Xie Z, Long X, Zhang C, Qi F, Zhang N. Electrical modulation properties of DNA drug molecules. Hum Mol Genet 2023; 32:357-366. [PMID: 35771227 DOI: 10.1093/hmg/ddac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/24/2023] Open
Abstract
DNA drug molecules are not only widely used in gene therapy, but also play an important role in controlling the electrical properties of molecular electronics. Covalent binding, groove binding and intercalation are all important forms of drug-DNA interaction. But its applications are limited due to a lack of understanding of the electron transport mechanisms after different drug-DNA interaction modes. Here, we used a combination of density functional theory calculations and nonequilibrium Green's function formulation with decoherence to study the effect of drug molecules on the charge transport property of DNA under three different binding modes. Conductance of DNA is found to decrease from 2.35E-5 G0 to 1.95E-6 G0 upon doxorubicin intercalation due to modifications of the density of states in the near-highest occupied molecular orbital region, δG = 1105.13%. Additionally, the conductance of DNA after cis-[Pt(NH3)2(py)Cl]+ covalent binding increases from 1.02E-6 G0 to 5.25E-5 G0, δG = 5047.06%. However, in the case of pentamidine groove binding, because there is no direct change in DNA molecular structure during drug binding, the conductance changes before and after drug binding is much smaller than in the two above cases, δG = 90.43%. Our theoretical calculations suggest that the conductance of DNA can be regulated by different drug molecules or switching the interaction modes between small molecules and DNA. This regulation opens new possibilities for their potential applications in controllable modulation of the electron transport property of DNA.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhiyang Xie
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xing Long
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Chaopeng Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Fei Qi
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Nan Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
23
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
24
|
Alexander A, Pillai AS, Nallamuthu A, Pal H, Enoch IVMV, Sayed M. G-Quadruplex selectivity and cytotoxicity of a guanidine-encapsulated porphyrin-cyclodextrin conjugate. Int J Biol Macromol 2022; 218:839-855. [PMID: 35905761 DOI: 10.1016/j.ijbiomac.2022.07.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
G-Quadruplex DNAs represent out-of-the-way nucleic acid conformations, frequently formed by guanine-rich sequences. They have emanated as cancer-associated targets for designed small molecules. The variation in the binding affinity of the synthesized compounds to duplex and quadruplex structures is an intriguing quest, solved by spectroscopic analysis. In this paper, we report the synthesis of a porphyrin-cyclodextrin conjugate, characterized by utilizing FT-IR, NMR, and mass spectrometry. Further, two benzimidazolylguanidines are synthesized which form host: guest complexes with the porphyrin-cyclodextrin conjugate. The structure of the complexes is optimized by analyzing their 2D ROESY spectra. The interactions of the host, guest, and the host: guest complexes with the duplex (calf thymus DNA) and quadruplex (kit22) nucleic acids are investigated employing UV-vis, fluorescence, circular dichroism, and DNA melting experiments. The calculated strengths of the compounds' binding with kit22 are in the order of 106, which is larger than those observed for the duplex DNA binding. The significant G-quadruplex selectivity of the host: guest complex of anthracenyl-benzimidazolylguanidine is discussed in detail. Further, the in vitro cytotoxicity of the compounds on MCF-7 cell lines is examined. The host: guest complexes show enhanced half-maximal inhibitory concentration values compared to the un-complexed compounds.
Collapse
Affiliation(s)
- Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Ananthi Nallamuthu
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Haridas Pal
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 00085, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Mhejabeen Sayed
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 00085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
25
|
Multitargeted anti-infective drugs: resilience to resistance in the antimicrobial resistance era. FUTURE DRUG DISCOVERY 2022; 4:FDD73. [PMID: 35600289 PMCID: PMC9112235 DOI: 10.4155/fdd-2022-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022] Open
Abstract
The standard drug discovery paradigm of single molecule – single biological target – single biological effect is perhaps particularly unsuitable for anti-infective drug discovery. This is due to the rapid evolution of resistance likely to be observed with single target drugs. Multitargeted anti-infective drugs are likely to be superior due to their lower susceptibility to target-related resistance mechanisms. Strathclyde minor groove binders are a class of compounds which have been developed by adopting the multitargeted anti-infective drugs paradigm, and their effectiveness against a wide range of pathogenic organisms is discussed. The renaming of this class to Strathclyde nucleic acid binders is also presented due to their likely targets including both DNA and RNA.
Collapse
|
26
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
27
|
Harmine-based dual inhibitors targeting histone deacetylase (HDAC) and DNA as a promising strategy for cancer therapy. Bioorg Chem 2022; 120:105604. [DOI: 10.1016/j.bioorg.2022.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
|
28
|
Chen C, Li X, Zhao H, Liu M, Du J, Zhang J, Yang X, Hou X, Fang H. Discovery of DNA-Targeting HDAC Inhibitors with Potent Antitumor Efficacy In Vivo That Trigger Antitumor Immunity. J Med Chem 2022; 65:3667-3683. [DOI: 10.1021/acs.jmedchem.1c02225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Chen
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250012, P. R. China
| | - Xue Li
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Meng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong 250117, P. R. China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xinying Yang
- Institute of Pharmaceutical Analysis, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Xuben Hou
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
| |
Collapse
|
29
|
Valdes-García J, Viviano-Posadas AO, Rivera-Chávez J, Ramírez-Apan T, Martínez-Vargas S, Aguirre-Hernández E, German-Acacio JM, Morales-Morales D, Dorazco-González A. Crystal structures and study of interaction mode of bis-benzimidazole-benzene derivatives with DNA. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Pandey S, Tripathi P, Parashar P, Maurya V, Malik MZ, Singh R, Yadav P, Tandon V. Synthesis and Biological Evaluation of Novel 1 H-Benzo[ d]imidazole Derivatives as Potential Anticancer Agents Targeting Human Topoisomerase I. ACS OMEGA 2022; 7:2861-2880. [PMID: 35097282 PMCID: PMC8793051 DOI: 10.1021/acsomega.1c05743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Small molecules that modulate biological functions are targets of modern-day drug discovery efforts. A new series of novel 1H-benzo[d]imidazoles (BBZs) were designed and synthesized with different functional groups at the phenyl ring and variable lengths of the alkyl chain at the piperazine end as anticancer agents. We identified human topoisomerase I (Hu Topo I) as a probable target of these molecules through a computational study and DNA relaxation assay, a functional assay of the Hu Topo I enzyme. UV absorption, fluorescence, and circular dichroism spectroscopy were used to study interactions between BBZ and DNA. Out of 16 compounds, 11a, 12a, and 12b showed strong binding affinity and thermal stabilization of AT sequence-specific DNA. BBZs were screened against a panel of 60 human cancer cell lines at National Cancer Institute, USA. Most potent molecules 11a, 12a, and 12b showed 50% growth inhibition (GI50) in a concentration range from 0.16 to 3.6 μM cancer cells. Moreover, 12b showed 50% inhibition of the relaxation of DNA by Hu Topo I at 16 μM. Furthermore, flow cytometry revealed that 11a, 12a, and 12b cause prominent G2M arrest of cancer cells. In view of the above, we propose that 12b deserves to be further evaluated for its therapeutic use as an anticancer agent.
Collapse
Affiliation(s)
- Stuti Pandey
- Department
of Chemistry, University of Delhi, Delhi 110007, India
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pragya Tripathi
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vikas Maurya
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Md. Zubbair Malik
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Raja Singh
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Pooja Yadav
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| | - Vibha Tandon
- Special
Centre for Molecular Medicine, Jawaharlal
Nehru University, New Delhi 110067, India
| |
Collapse
|
31
|
Soost D, Bringmann G, Ihmels H. Towards an understanding of the biological activity of naphthylisoquinoline alkaloids: DNA-binding properties of dioncophyllines A, B, and C. NEW J CHEM 2022. [DOI: 10.1039/d2nj04081f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dioncophylline A and B bind to duplex DNA in a half-intercalation binding mode and to abasic site-containing DNA by insertion.
Collapse
Affiliation(s)
- Denisa Soost
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Heiko Ihmels
- Department of Chemistry – Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio-)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
32
|
Mousivand M, Bagherzadeh K, Anfossi L, Javan-Nikkhah M. Key criteria for engineering mycotoxin binding aptamers via computational simulations: Aflatoxin B1 as a case study. Biotechnol J 2021; 17:e2100280. [PMID: 34800084 DOI: 10.1002/biot.202100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Due to the difficulties in monoclonal antibody production specific to mycotoxins, aptameric probes have been considered as suitable alternatives. The low efficiency of the SELEX procedure in screening high affinity aptamers for binding mycotoxins as small molecules can be significantly improved through computational techniques. Previously, we designed five new aptamers to aflatoxin B1 (AFB1) based on a known aptamer sequence (Patent: PCT/CA2010/001 292, Apt1) through a genetic algorithm-based in silico maturation strategy and experimentally measured their affinity to the target toxin. Here, integrated molecular dynamic simulation (MDs) studies with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis to clarify the binding modes, critical interacting nucleic bases and energy component contributions in the six AFB1-binding aptamers. The aptamer F20, which was selected in the first work, showed the best free binding energy and complex stability compared to other aptamers. The trajectory analysis revealed that AFB1 recognized F20 through the groove binding mode along with precise shape complementarity. The MD simulation results revealed that dynamic water intermediate interactions also play a key role in promoting complex stability. According to the MM-PBSA calculations, van der Waals contacts were identified as dominant energy components in all complexes. Interestingly, a high consistency is observed between the experimentally obtained binding affinities of the six aptamers with their free energy solvation. The computational findings, confirmed via previous experiments, highlighted the binding modes, the dynamic hydration of complex components and the total free interacting energy as the crucial criteria in discovering high functional aptameric probes.
Collapse
Affiliation(s)
- Maryam Mousivand
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Turin, Italy
| | - Mohammad Javan-Nikkhah
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
33
|
Feng Y, Yan Y, He J, Tao H, Wu Q, Huang SY. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov Today 2021; 27:838-847. [PMID: 34718205 DOI: 10.1016/j.drudis.2021.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acid (NA)-ligand interactions have crucial roles in many cellular processes and, thus, are increasingly attracting therapeutic interest in drug discovery. Molecular docking is a valuable tool for studying molecular interactions. However, because NAs differ significantly from proteins in both their physical and chemical properties, traditional docking algorithms and scoring functions for protein-ligand interactions might not be applicable to NA-ligand docking. Therefore, various sampling strategies and scoring functions for NA-ligand interactions have been developed. Here, we review the basic principles and current status of docking algorithms and scoring functions for DNA/RNA-ligand interactions. We also discuss challenges and limitations of current docking and scoring approaches.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
34
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
35
|
Whitfield C, Zhang M, Winterwerber P, Wu Y, Ng DYW, Weil T. Functional DNA-Polymer Conjugates. Chem Rev 2021; 121:11030-11084. [PMID: 33739829 PMCID: PMC8461608 DOI: 10.1021/acs.chemrev.0c01074] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 02/07/2023]
Abstract
DNA nanotechnology has seen large developments over the last 30 years through the combination of solid phase synthesis and the discovery of DNA nanostructures. Solid phase synthesis has facilitated the availability of short DNA sequences and the expansion of the DNA toolbox to increase the chemical functionalities afforded on DNA, which in turn enabled the conception and synthesis of sophisticated and complex 2D and 3D nanostructures. In parallel, polymer science has developed several polymerization approaches to build di- and triblock copolymers bearing hydrophilic, hydrophobic, and amphiphilic properties. By bringing together these two emerging technologies, complementary properties of both materials have been explored; for example, the synthesis of amphiphilic DNA-polymer conjugates has enabled the production of several nanostructures, such as spherical and rod-like micelles. Through both the DNA and polymer parts, stimuli-responsiveness can be instilled. Nanostructures have consequently been developed with responsive structural changes to physical properties, such as pH and temperature, as well as short DNA through competitive complementary binding. These responsive changes have enabled the application of DNA-polymer conjugates in biomedical applications including drug delivery. This review discusses the progress of DNA-polymer conjugates, exploring the synthetic routes and state-of-the-art applications afforded through the combination of nucleic acids and synthetic polymers.
Collapse
Affiliation(s)
- Colette
J. Whitfield
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Meizhou Zhang
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - Pia Winterwerber
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, Luoyu Road 1037, Hongshan, Wuhan 430074, People’s Republic of China
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
36
|
Kumar S, Nair MS. Deciphering the interaction of flavones with calf thymus DNA and octamer DNA sequence (CCAATTGG) 2. RSC Adv 2021; 11:29354-29371. [PMID: 35479565 PMCID: PMC9040621 DOI: 10.1039/d1ra04101k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 01/18/2023] Open
Abstract
We investigated the interaction of three flavone compounds, baicalein, chrysin and flavone with calf thymus DNA and octamer DNA sequence (CCAATTGG)2. The binding mechanisms of the flavone compounds with both DNA were unveiled using biophysical, thermodynamic and molecular modelling techniques. Absorption and fluorescence titrations confirm the formation of the DNA complexes along with the extent of interaction. Absorption data proposed an intercalation mode of binding. Fluorescence displacement assays using ethidium bromide and Hoechst 33258 data supports a partial intercalation. Potassium iodide quenching substantiated this finding. Circular dichroism data revealed major structural changes on binding with flavones which can arise from intercalation partially or in a tilted arrangement. Analysis of the effect of ionic strength on complex formation eliminated the role of electrostatic interaction in the binding. Differential scanning calorimetric data showed substantial changes in the melting temperatures of complexes and predicted the DNA–baicalein complex as the most stable one. Molecular modelling showcased that the complexes are located near the AT rich region. Docking analysis with different sequences showed that the flavone compounds intercalated with base pairs only with d(CGATCG)2. Binding of flavones induce conformational changes in double stranded DNA.![]()
Collapse
Affiliation(s)
- Shailendra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee Uttarakhand-247667 India +91-1332-273560 +91-1332-285790
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee Uttarakhand-247667 India +91-1332-273560 +91-1332-285790
| |
Collapse
|
37
|
Abstract
AbstractFluorophore 1,8-naphthilamide was linked to 2-bromoacridine through an ethylenediamine spacer using a succinct synthetic route to give a bromoacridine-linked, bifunctional fluorophore conjugate for the detection of triplex DNA. Acridine is well known to intercalate into duplex DNA whereas introduction of a bulky bromine atom at position C2 redirects specificity for triplex over duplex DNA. In this work, photoelectron transfer assay was used to demonstrate that the synthesised 2-bromoacridine-linked fluorophore conjugate had good selectivity for the representative triplex DNA target sequence d(T*A.T)20 compared with double-stranded d(T.A)20, single-stranded dT20 or d(G/A)19 DNA sequences.
Graphic abstract
Collapse
|
38
|
Fudickar W, Bauch M, Ihmels H, Linker T. DNA-Triggered Enhancement of Singlet Oxygen Production by Pyridinium Alkynylanthracenes. Chemistry 2021; 27:13591-13604. [PMID: 34263955 DOI: 10.1002/chem.202101918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/23/2022]
Abstract
There is an ongoing interest in 1 O2 sensitizers, whose activity is selectively controlled by their interaction with DNA. To this end, we synthesized three isomeric pyridinium alkynylanthracenes 2 o-p and a water-soluble trapping reagent for 1 O2 . In water and in the absence of DNA, these dyes show a poor efficiency to sensitize the photooxygenation of the trapping reagent as they decompose due to electron transfer processes. In contrast, in the presence of DNA 1 O2 is generated from the excited DNA-bound ligand. The interactions of 2 o-p with DNA were investigated by thermal DNA melting studies, UV/vis and fluorescence spectroscopy, and linear and circular dichroism spectroscopy. Our studies revealed an intercalative binding with an orientation of the long pyridyl-alkynyl axis parallel to the main axis of the DNA base pairs. In the presence of poly(dA : dT), all three isomers show an enhanced formation of singlet oxygen, as indicated by the reaction of the latter with the trapping reagent. With green light irradiation of isomer 2 o in poly(dA : dT), the conversion rate of the trapping reagent is enhanced by a factor >10. The formation of 1 O2 was confirmed by control experiments under anaerobic conditions, in deuterated solvents, or by addition of 1 O2 quenchers. When bound to poly(dG : dC), the opposite effect was observed only for isomers 2 o and 2 m, namely the trapping reagent reacted significantly slower. Overall, we showed that pyridinium alkynylanthracenes are very useful intercalators, that exhibit an enhanced photochemical 1 O2 generation in the DNA-bound state.
Collapse
Affiliation(s)
- Werner Fudickar
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Marcel Bauch
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
39
|
Buric AJ, Dickerhoff J, Yang D. Novel DNA Bis-Intercalator XR5944 as a Potent Anticancer Drug-Design and Mechanism of Action. Molecules 2021; 26:molecules26144132. [PMID: 34299405 PMCID: PMC8304338 DOI: 10.3390/molecules26144132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
This review is dedicated to Professor William A. Denny’s discovery of XR5944 (also known as MLN944). XR5944 is a DNA-targeted agent with exceptionally potent antitumor activity and a novel DNA binding mode, bis-intercalation and major groove binding, as well as a novel mechanism of action, transcription inhibition. This novel anticancer compound represents a remarkable accomplishment resulting from two decades of drug discovery by Professor Denny and coworkers. Here, we review our work on the structural study of the DNA binding mode of XR5944 and mechanistic study of XR5944 action.
Collapse
Affiliation(s)
- Adam J. Buric
- College of Pharmacy, Medicinal Chemistry and Molecular Pharmacology, 575 W Stadium Ave, Purdue University, West Lafayette, IN 47907, USA; (A.J.B.); (J.D.)
| | - Jonathan Dickerhoff
- College of Pharmacy, Medicinal Chemistry and Molecular Pharmacology, 575 W Stadium Ave, Purdue University, West Lafayette, IN 47907, USA; (A.J.B.); (J.D.)
| | - Danzhou Yang
- College of Pharmacy, Medicinal Chemistry and Molecular Pharmacology, 575 W Stadium Ave, Purdue University, West Lafayette, IN 47907, USA; (A.J.B.); (J.D.)
- Center for Cancer Research, Purdue University, 201 S University St, West Lafayette, IN 47906, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47906, USA
- Correspondence: ; Tel.: +1-765-494-8148
| |
Collapse
|
40
|
Ganguly S, Murugan NA, Ghosh D, Narayanaswamy N, Govindaraju T, Basu G. DNA Minor Groove-Induced cis- trans Isomerization of a Near-Infrared Fluorescent Probe. Biochemistry 2021; 60:2084-2097. [PMID: 34142803 DOI: 10.1021/acs.biochem.1c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of small molecules that exhibit turn-on far-red or near-infrared (NIR) fluorescence upon DNA binding and understanding how they bind DNA are important for imaging and bioanalytical applications. Here we report the DNA-bound structure and the DNA binding mechanism of quinone cyanine dithiazole (QCy-DT), a recently reported AT-specific turn-on NIR fluorescent probe for double-stranded DNA. The nuclear magnetic resonance (NMR)-derived structure showed minor groove binding but no specific ligand-DNA interactions, consistent with an endothermic and entropy-driven binding mechanism deduced from isothermal titration calorimetry. Minor groove binding is typically fast because it minimally perturbs the DNA structure. However, QCy-DT exhibited unusually slow DNA binding. The cyanine-based probe is capable of cis-trans isomerization due to overlapping methine bridges, with 16 possible slowly interconverting cis/trans isomers. Using NMR, density functional theory, and free energy calculations, we show that the DNA-free and DNA-bound environments of QCy-DT prefer distinctly different isomers, indicating that the origin of the slow kinetics is a cis-trans isomerization and that the minor groove preferentially selects an otherwise unstable cis/trans isomer of QCy-DT. Flux analysis showed the conformational selection pathway to be the dominating DNA binding mechanism at low DNA concentrations, which switches to the induced fit pathway at high DNA concentrations. This report of cis/trans isomerization of a ligand, upon binding the DNA minor groove, expands the prevailing understanding of unique discriminatory powers of the minor groove and has an important bearing on using polymethine cyanine dyes to probe the kinetics of molecular interactions.
Collapse
Affiliation(s)
- Sudakshina Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| |
Collapse
|
41
|
Effects of N-terminus modified Hx-amides on DNA binding affinity, sequence specificity, cellular uptake, and gene expression. Bioorg Med Chem Lett 2021; 47:128158. [PMID: 34058343 DOI: 10.1016/j.bmcl.2021.128158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Five X-HxIP (Hx-amides) 6a-e, in which the N-terminus p-anisyl moiety is modified, were designed and synthesised with the purpose of optimising DNA binding, improving cellular uptake/nuclear penetration, and enhancing the modulation of the topoisomerase IIα (TOP2A) gene expression. The modifications include a fluorophenyl group and other heterocycles bearing different molecular shapes, size, and polarity. Like their parent compound HxIP 3, all five X-HxIP analogues bind preferentially to their cognate sequence 5'-TACGAT-3', which is found embedded on the 5' flank of the inverted CCAAT box-2 (ICB2) site in the TOP2A gene promoter, and inhibit protein complex binding. Interestingly, the 4-pyridyl analog 6a exhibits greater binding affinity for the target DNA sequence and abolishes the protein:ICB2 interaction in vitro, at a lower concentration, compared to the prototypical compound HxIP 3. Analogues 6b-e, display improved DNA sequence specificity, but reduced binding affinity for the cognate sequence, relative to the unmodified HxIP 3, with polyamides 6b and 6e being the most sequence selective. However, unlike 3 and 6b, 6a was unable to enter cells, access the nucleus and thereby affect TOP2A gene expression in confluent human lung cancer cells. These results show that while DNA binding affinity and sequence selectivity are important, consideration of cellular uptake and concentration in the nucleus are critical when exerting biological activity is the desired outcome. By characterising the DNA binding, cellular uptake and gene regulatory properties of these small molecules, we can elucidate the determinants of the elicited biological activity, which can be impacted by even small structural modifications in the polyamide molecular design.
Collapse
|
42
|
Wang J, Ansari MF, Zhou CH. Identification of Unique Quinazolone Thiazoles as Novel Structural Scaffolds for Potential Gram-Negative Bacterial Conquerors. J Med Chem 2021; 64:7630-7645. [PMID: 34009979 DOI: 10.1021/acs.jmedchem.1c00334] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A class of quinazolone thiazoles was identified as new structural scaffolds for potential antibacterial conquerors to tackle dreadful resistance. Some prepared compounds exhibited favorable bacteriostatic efficiencies on tested bacteria, and the most representative 5j featuring the 4-trifluoromethylphenyl group possessed superior performances against Escherichia coli and Pseudomonas aeruginosa to norfloxacin. Further studies revealed that 5j with inappreciable hemolysis could hinder the formation of bacterial biofilms and trigger reactive oxygen species generation, which could take responsibility for emerging low resistance. Subsequent paralleled exploration discovered that 5j not only disintegrated outer and inner membranes to induce leakage of cytoplasmic contents but also broke the metabolism by suppressing dehydrogenase. Meanwhile, derivative 5j could intercalate into DNA to exert powerful antibacterial properties. Moreover, compound 5j gave synergistic effects against some Gram-negative bacteria in combination with norfloxacin. These findings indicated that this novel structural type of quinazolone thiazoles showed therapeutic foreground in struggling with Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
43
|
Yusof R, Jumbri K, Ahmad H, Abdulmalek E, Abdul Rahman MB. Binding of tetrabutylammonium bromide based deep eutectic solvent to DNA by spectroscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119543. [PMID: 33636491 DOI: 10.1016/j.saa.2021.119543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (Kb) between DES and DNA up to 5.75 × 105 kJ mol-1 and decreased the binding of Gibbs energy (ΔGo) to 32.86 kJ mol-1. Through displacement studies, all synthesised DESs have been shown to displace DAPI (4',6-diamidino-2-phenylindole) and were able to bind on the minor groove of Adenine-Thymine (AT)-rich DNA. A higher number of hydroxyl (OH) groups caused the TBABr:Gly to form more hydrogen bonds with DNA bases and had the highest ability to quench DAPI from DNA, with Stern-Volmer constants (Ksv) of 115.16 M-1. This study demonstrated that the synthesised DESs were strongly bound to DNA through a combination of electrostatic, hydrophobic, and groove binding. Hence, DES has the potential to solvate and stabilise nucleic acid structures.
Collapse
Affiliation(s)
- Rizana Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia
| | - Khairulazhar Jumbri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Research in Ionic Liquids, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Integrated Chemical BioPhysics Research Centre, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
44
|
Costa Dos Santos G, Renovato-Martins M, de Brito NM. The remodel of the "central dogma": a metabolomics interaction perspective. Metabolomics 2021; 17:48. [PMID: 33969452 PMCID: PMC8106972 DOI: 10.1007/s11306-021-01800-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In 1957, Francis Crick drew a linear diagram on a blackboard. This diagram is often called the "central dogma." Subsequently, the relationships between different steps of the "central dogma" have been shown to be considerably complex, mostly because of the emerging world of small molecules. It is noteworthy that metabolites can be generated from the diet through gut microbiome metabolism, serve as substrates for epigenetic modifications, destabilize DNA quadruplexes, and follow Lamarckian inheritance. Small molecules were once considered the missing link in the "central dogma"; however, recently they have acquired a central role, and their general perception as downstream products has become reductionist. Metabolomics is a large-scale analysis of metabolites, and this emerging field has been shown to be the closest omics associated with the phenotype and concomitantly, the basis for all omics. AIM OF REVIEW Herein, we propose a broad updated perspective for the flux of information diagram centered in metabolomics, including the influence of other factors, such as epigenomics, diet, nutrition, and the gut- microbiome. KEY SCIENTIFIC CONCEPTS OF REVIEW Metabolites are the beginning and the end of the flux of information.
Collapse
Affiliation(s)
- Gilson Costa Dos Santos
- Laboratory of NMR Metabolomics, IBRAG, Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| | - Mariana Renovato-Martins
- Department of Cellular and Molecular Biology, IB, Federal Fluminense University, Niterói, 24210-200, Brazil
| | - Natália Mesquita de Brito
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Department of Cell Biology, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| |
Collapse
|
45
|
Rodríguez MR, Lavecchia MJ, Parajón-Costa BS, González-Baró AC, González-Baró MR, Cattáneo ER. DNA cleavage mechanism by metal complexes of Cu(II), Zn(II) and VO(IV) with a schiff-base ligand. Biochimie 2021; 186:43-50. [PMID: 33865903 DOI: 10.1016/j.biochi.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Metal ions and metal complexes are important components of nucleic acid biochemistry, participating both in regulation of gene expression and as therapeutic agents. Three new transition metal complexes of copper(II), zinc(II) and oxidovanadium(IV) with a ligand derived from o-vanillin and thiophene were previously synthesized and their antitumor properties were studied in our laboratory. To elucidate some molecular mechanisms tending to explain the cytotoxic effects observed over tumor cells, we investigated the interaction of these complexes with DNA by gel electrophoresis, UV-Vis spectroscopy, docking studies and molecular dynamics simulations. Our spectroscopy and computational results have shown that all of them were able to bind to DNA, Cu(II) complex is located in the minor groove while Zn(II) and oxidovanadium(IV) complexes act as major groove binding molecules. Interestingly, only the Cu(II) complex caused double-strand DNA nicks, consistent with its higher cytotoxic activities previously observed in tumor cell lines. We propose that the DNA-complex interaction destabilize the molecule either disrupting the phosphodiester bonds or impairing DNA replication, giving those complexes strong antitumor potential.
Collapse
Affiliation(s)
- María R Rodríguez
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Martín J Lavecchia
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - Ana C González-Baró
- CEQUINOR (Centro de Química Inorgánica "Prof. Dr. Pedro J. Aymonino"), Consejo Nacional de Investigaciones Científicas y Técnicas -CCT-La Plata, Universidad Nacional de La Plata, Bvd. 120 N 1469, La Plata, Argentina
| | - María R González-Baró
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata 60 y 120 S/N, La Plata, Buenos Aires, Argentina
| | - Elizabeth R Cattáneo
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata 60 y 120 S/N, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Ichimaru Y, Kato K, Okuno Y, Yamaguchi Y, Jin W, Fujita M, Otsuka M, Imai M, Kurosaki H. Design and synthesis of an anthranyl bridged optically active dinuclear iron(II)-ligand and evaluation of DNA-cleaving activity. Bioorg Med Chem Lett 2021; 35:127782. [PMID: 33422608 DOI: 10.1016/j.bmcl.2021.127782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 11/26/2022]
Abstract
It is necessary to design a ligand that is compatible with the target molecule to optimally use the DNA-cleaving ability of metal complexes. In this study, we synthesized an optically active dinuclear ligand, (1R,1'R,2R,2'R)-N1,N1'-(anthracene-1,8-diylbis(methylene))bis(N2,N2-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine) (R-ABDC, 4a) and its enantiomer (S-ABDC, 4b). We then prepared their Fe(II) complexes by mixing the ligand with FeSO4·7H2O in situ and investigated DNA-cleaving activities using plasmid DNA in the presence of excess sodium ascorbate at atmospheric conditions. The Fe(II) complexes efficiently cleaved DNA and selectively recognized two consecutive A and/or T sequences.
Collapse
Affiliation(s)
- Yoshimi Ichimaru
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Yoshinori Okuno
- Department of Medicinal Chemistry, Yokohama University of Pharmacy, 601 Matano-cho Totsuka-ku, Yokohama 245-0066 Japan.
| | - Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto 860-8555, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Masanori Imai
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Hiromasa Kurosaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| |
Collapse
|
47
|
Bortolozzi R, Ihmels H, Schulte R, Stremmel C, Viola G. Synthesis, DNA-binding and antiproliferative properties of diarylquinolizinium derivatives. Org Biomol Chem 2021; 19:878-890. [PMID: 33410854 DOI: 10.1039/d0ob02298e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of ten 2,7- and 2,8-diarylquinolizinium derivatives was synthesized and their DNA-binding and cytotoxic properties were investigated. Except for one nitro-substituted derivative all tested diarylquinolizinium ions bind to DNA with sufficient affinity (2 × 104 M-1-2 × 105 M-1). It was shown with photometric, fluorimetric and polarimetric titrations as well as with flow-LD analysis that the ligands bind mainly by intercalation to duplex DNA, however, depending on the ligand-DNA ratio, groove binding and backbone association were also observed with some derivatives. The biological activity was further investigated with tests of cytotoxicity and antiproliferative properties towards non-tumor cells and selected cancer cells, along with cell cycle analysis and an annexin-V assay. Notably, substrates that carry donor-functionalities in the 4-position of the phenyl substituents revealed a strong, and in some cases selective, antiproliferative activity as quantified by the growth inhibition, GI50, at very low micromolar and even submicromolar level both in leukemia and solid tumors.
Collapse
Affiliation(s)
- Roberta Bortolozzi
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Robin Schulte
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Christopher Stremmel
- Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany.
| | - Giampietro Viola
- Department of Women's and Child's health, Oncohematology laboratory, University of Padova, Via Giustiniani 2, I-35128 Padova, Italy. giampietro,
| |
Collapse
|
48
|
Novel 1-methoxyindole- and 2-alkoxyindole-based chalcones: design, synthesis, characterization, antiproliferative activity and DNA, BSA binding interactions. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02690-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. SCIENCE ADVANCES 2021; 7:eabc9917. [PMID: 33571116 PMCID: PMC7840121 DOI: 10.1126/sciadv.abc9917] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Antibiotic resistance is now a major threat to human health, and one approach to combating this threat is to develop resistance-resistant antibiotics. Synthetic antimicrobial polymers are generally resistance resistant, having good activity with low resistance rates but usually with low therapeutic indices. Here, we report our solution to this problem by introducing dual-selective mechanisms of action to a short amidine-rich polymer, which can simultaneously disrupt bacterial membranes and bind to bacterial DNA. The oligoamidine shows unobservable resistance generation but high therapeutic indices against many bacterial types, such as ESKAPE strains and clinical isolates resistant to multiple drugs, including colistin. The oligomer exhibited excellent effectiveness in various model systems, killing extracellular or intracellular bacteria in the presence of mammalian cells, removing all bacteria from Caenorhabditis elegans, and rescuing mice with severe infections. This "dual mechanisms of action" approach may be a general strategy for future development of antimicrobial polymers.
Collapse
Affiliation(s)
- Silei Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yangfan Xu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuanxin Gu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Carolyn Shoen
- Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | - Brenda Andrade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518035, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, 100044, China
| | - Qingyun Cai
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
50
|
Hadwiger LA. Nonhost Disease Resistance in Pea: Chitosan's Suggested Role in DNA Minor Groove Actions Relative to Phytoalexin-Eliciting Anti-Cancer Compounds. Molecules 2020; 25:E5913. [PMID: 33327391 PMCID: PMC7764892 DOI: 10.3390/molecules25245913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
A stable intense resistance called "nonhost resistance" generates a complete multiple-gene resistance against plant pathogenic species that are not pathogens of pea such as the bean pathogen, Fusarium solani f. sp. phaseoli (Fsph). Chitosan is a natural nonhost resistance response gene activator of defense responses in peas. Chitosan may share with cancer-treatment compounds, netropsin and some anti-cancer drugs, a DNA minor groove target in plant host tissue. The chitosan heptamer and netropsin have the appropriate size and charge to reside in the DNA minor groove. The localization of a percentage of administered radio-labeled chitosan in the nucleus of plant tissue in vivo indicates its potential to transport to site(s) within the nuclear chromatin (1,2). Other minor groove-localizing compounds administered to pea tissue activate the same secondary plant pathway that terminates in the production of the anti-fungal isoflavonoid, pisatin an indicator of the generated resistance response. Some DNA minor groove compounds also induce defense genes designated as "pathogenesis-related" (PR) genes. Hypothetically, DNA targeting components alter host DNA in a manner enabling the transcription of defense genes previously silenced or minimally expressed. Defense-response-elicitors can directly (a) target host DNA at the site of transcription or (b) act by a series of cascading events beginning at the cell membrane and indirectly influence transcription. A single defense response, pisatin induction, induced by chitosan and compounds with known DNA minor groove attachment potential was followed herein. A hypothesis is formulated suggesting that this DNA target may be accountable for a portion of the defense response generated in nonhost resistance.
Collapse
Affiliation(s)
- Lee A Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| |
Collapse
|