1
|
Larmore SP, Champagne PA. Cyclopropylcarbinyl-to-Homoallyl Carbocation Equilibria Influence the Stereospecificity in the Nucleophilic Substitution of Cyclopropylcarbinols. J Org Chem 2023. [PMID: 37141426 DOI: 10.1021/acs.joc.3c00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The synthesis of quaternary homoallylic halides and trichloroacetates from cyclopropylcarbinols, as reported by Marek (J. Am. Chem. Soc. 2020, 142, 5543-5548), is one of the few reported examples of stereospecific nucleophilic substitution involving chiral bridged carbocations. However, for the phenyl-substituted substrates, poor specificity is observed and mixtures of diastereomers are obtained. To understand the nature of the intermediates involved and explain the loss of specificity for certain substrates, we have performed a computational investigation of the reaction mechanism using ωB97X-D optimizations and DLPNO-CCSD(T) energy refinements. Our results indicate that cyclopropylcarbinyl cations are stable intermediates in this reaction, while bicyclobutonium structures are high-energy transition structures that are not involved. Instead, multiple rearrangement pathways of cyclopropylcarbinyl cations were located, including ring openings to homoallylic cations. The activation barriers required to reach such structures are correlated to the nature of the substituents; while direct nucleophilic attack on the chiral cyclopropylcarbinyl cations is kinetically favored for most systems, the rearrangements become competitive with nucleophilic attack for the phenyl-substituted systems, leading to a loss of specificity through rearranged carbocation intermediates. As such, stereospecific reactions of chiral cyclopropylcarbinyl cations depend on the energies required to access their corresponding homoallylic structures, from which selectivity is not guaranteed.
Collapse
Affiliation(s)
- Sean P Larmore
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Bicyclobutanes: from curiosities to versatile reagents and covalent warheads. Chem Sci 2022; 13:11721-11737. [PMID: 36320907 PMCID: PMC9580472 DOI: 10.1039/d2sc03948f] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 09/16/2023] Open
Abstract
The unique chemistry of small, strained carbocyclic systems has long captivated organic chemists from a theoretical and fundamental standpoint. A resurgence of interest in strained carbocyclic species has been prompted by their potential as bioisosteres, high fraction of sp3 carbons, and limited appearance in the patent literature. Among strained ring systems, bicyclo[1.1.0]butane (BCB) stands apart as the smallest bicyclic carbocycle and is amongst the most strained carbocycles known. Despite the fact that BCBs have been synthesized and studied for well over 50 years, they have long been regarded as laboratory curiosities. However, new approaches for preparing, functionalizing, and using BCBs in "strain-release" transformations have positioned BCBs to be powerful synthetic workhorses. Further, the olefinic character of the bridgehead bond enables BCBs to be elaborated into various other ring systems and function as covalent warheads for bioconjugation. This review will discuss the recent developments in the synthesis and functionalization of BCBs as well as the applications of these strained rings in synthesis and drug discovery. An overview of the properties and the historical context of this interesting structure will be provided.
Collapse
Affiliation(s)
- Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| | - John A Milligan
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University 4201 Henry Avenue Philadelphia PA 19144 USA
| | - Leon J Tilley
- Department of Chemistry, Stonehill College 320 Washington Street Easton MA 02357 USA
| | - Taylor M Sodano
- Therapeutics Discovery, Janssen Research & Development LLC 1400 McKean Road, Spring House PA 19477 USA
| |
Collapse
|
3
|
Fernandes AJ, Panossian A, Michelet B, Martin-Mingot A, Leroux FR, Thibaudeau S. CF 3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry. Beilstein J Org Chem 2021; 17:343-378. [PMID: 33828616 PMCID: PMC7871035 DOI: 10.3762/bjoc.17.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
"The extraordinary instability of such an "ion" accounts for many of the peculiarities of organic reactions" - Franck C. Whitmore (1932). This statement from Whitmore came in a period where carbocations began to be considered as intermediates in reactions. Ninety years later, pointing at the strong knowledge acquired from the contributions of famous organic chemists, carbocations are very well known reaction intermediates. Among them, destabilized carbocations - carbocations substituted with electron-withdrawing groups - are, however, still predestined to be transient species and sometimes considered as exotic ones. Among them, the CF3-substituted carbocations, frequently suggested to be involved in synthetic transformations but rarely considered as affordable intermediates for synthetic purposes, have long been investigated. This review highlights recent and past reports focusing on their study and potential in modern synthetic transformations.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Bastien Michelet
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Agnès Martin-Mingot
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Sébastien Thibaudeau
- Université de Poitiers, CNRS, IC2MP, UMR 7285, Equipe “Synthèse Organique”, 4 Rue Michel Brunet, 86073 Poitiers Cedex 9, France
| |
Collapse
|
4
|
Demchuk OP, Hryshchuk OV, Vashchenko BV, Trofymchuk SA, Melnykov KP, Skreminskiy A, Volochnyuk DM, Grygorenko OO. Fluoroalkyl‐Containing 1,2‐Disubstituted Cyclobutanes: Advanced Building Blocks for Medicinal Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Oleksandr P. Demchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Kostiantyn P. Melnykov
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | | | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02660 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
5
|
Hari DP, Abell JC, Fasano V, Aggarwal VK. Ring-Expansion Induced 1,2-Metalate Rearrangements: Highly Diastereoselective Synthesis of Cyclobutyl Boronic Esters. J Am Chem Soc 2020; 142:5515-5520. [PMID: 32146807 DOI: 10.1021/jacs.0c00813] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The broad synthetic utility of organoboron compounds stems from their ready ability to undergo 1,2-migrations. Normally, such shifts are induced by α-leaving groups or by reactions of alkenyl boronates with electrophiles. Herein, we present a new strategy to induce 1,2-metalate rearrangements, via ring expansion of vinylcyclopropyl boronate complexes activated by electrophiles. This leads to a cyclopropane-stabilized carbocation, which triggers ring expansion and concomitant 1,2-metalate rearrangement. This novel process delivers medicinally relevant 1,2-substituted cyclobutyl boronic esters with high levels of diastereoselectivity. A wide range of organolithiums and Grignard reagents, electrophiles, and vinylcyclopropyl boronic esters can be used. The methodology was applied to a short, stereoselective synthesis of (±)-grandisol. Computational studies indicate that the reaction proceeds via a nonclassical carbocation followed by anti-1,2-migration.
Collapse
Affiliation(s)
- Durga Prasad Hari
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Joseph C Abell
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Valerio Fasano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
6
|
Roy A, Bonetti V, Wang G, Wu Q, Klare HFT, Oestreich M. Silylium-Ion-Promoted Ring-Opening Hydrosilylation and Disilylation of Unactivated Cyclopropanes. Org Lett 2020; 22:1213-1216. [DOI: 10.1021/acs.orglett.0c00173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Avijit Roy
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Vittorio Bonetti
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Guoqiang Wang
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Qian Wu
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Hendrik F. T. Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|