1
|
Liu W, Ma Y, Huang Q, Sheng J, Lv L, Li Z. Pd-IPent-Catalyzed Defluorinative Annulation of gem-Difluorocyclopropanes with Enamides: Synthesis of Multisubstituted N-H Pyrroles. Org Lett 2025. [PMID: 39984819 DOI: 10.1021/acs.orglett.5c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
We present a Pd-IPent-catalyzed ring-opening defluorinative annulation reaction of gem-difluorocyclopropanes with enamides, which provides a convenient and efficient strategy for the synthesis of multisubstituted N-H pyrrole derivatives. This transformation selectively cleaves the C1-C3 bond, two C-F bonds, and the C-N bond in a one-pot procedure. Additionally, this protocol allows for the modification of several bioactive molecules.
Collapse
Affiliation(s)
- Wenhao Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Yahui Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China
| |
Collapse
|
2
|
Charron O, Kosiuha M, Phansavath P, Ratovelomanana-Vidal V, Gontard G, Meyer C. Asymmetric Transfer Hydrogenation of gem-Difluorocyclopropenyl Ketones: The Synthesis and Functionalization of Enantioenriched cis gem-Difluorocyclopropyl Ketones. J Org Chem 2024; 89:14073-14080. [PMID: 39284014 DOI: 10.1021/acs.joc.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The asymmetric transfer hydrogenation of gem-difluorocyclopropenyl ketones, catalyzed by a Noyori-Ikariya ruthenium complex, was developed to access substituted optically enriched cis-disubstituted gem-difluorocyclopropyl ketones, and the value of these latter building blocks was illustrated by the synthesis of heterocycles fused to the difluorocyclopropyl moiety.
Collapse
Affiliation(s)
- Olivier Charron
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Marharyta Kosiuha
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phannarath Phansavath
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D Team, PSL University, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
3
|
Zhu Y, Jia J, Song X, Gong C, Xia Y. Double strain-release enables formal C-O/C-F and C-N/C-F ring-opening metathesis. Chem Sci 2024:d4sc03624g. [PMID: 39129767 PMCID: PMC11310891 DOI: 10.1039/d4sc03624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024] Open
Abstract
Metathesis reactions have been established as a powerful tool in organic synthesis. While great advances were achieved in double-bond metathesis, like olefin metathesis and carbonyl metathesis, single-bond metathesis has received less attention in the past decade. Herein, we describe the first C(sp3)-O/C(sp3)-F bond formal cross metathesis reaction between gem-difluorinated cyclopropanes (gem-DFCPs) and epoxides under rhodium catalysis. The reaction involves the formation of a highly electrophilic fluoroallyl rhodium intermediate, which is capable of reacting with the oxygen atom in epoxides as weak nucleophiles followed by C-F bond reconstruction. The use of two strained ring substrates is the key to the success of the formal cross metathesis, in which the double strain release accounts for the driving force of the transformation. Additionally, azetidine also proves to be a suitable substrate for this transformation. The reaction offers a novel approach for the metathesis of C(sp3)-O and C(sp3)-N bonds, presenting new opportunities for single-bond metathesis.
Collapse
Affiliation(s)
- Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jie Jia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Chunyu Gong
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C. C. Chen Institute of Health, State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
4
|
Yang H, Zeng Y, Song X, Che L, Jiang ZT, Lu G, Xia Y. Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with gem-Difluorinated Cyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202403602. [PMID: 38515395 DOI: 10.1002/anie.202403602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Hui Yang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lin Che
- Linyi University, School of Chemistry and Chemical Engineering, Linyi, 276000, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Wu X, Song X, Xia Y. High-Valent Copper Catalysis Enables Regioselective Fluoroarylation of Gem-Difluorinated Cyclopropanes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401243. [PMID: 38460153 PMCID: PMC11095216 DOI: 10.1002/advs.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/21/2024] [Indexed: 03/11/2024]
Abstract
Transition-metal (TM) catalyzed reaction of gem-difluorinated cyclopropanes (gem-DFCPs) has drawn much attention recently. The reaction generally occurs via the activation of the distal C─C bond in gem-DFCPs by a low-valent TM through oxidative addition, eventually producing mono-fluoro olefins as the coupling products. However, achieving regioselective activation of the proximal C─C bond in gem-DFCPs that overcomes the intrinsic reactivity via TM catalysis remains elusive. Here, a new reaction mode of gem-DFCPs enabled by high-valent copper catalysis, which allows exclusive activation of the congested proximal C─C bond is presented. The reaction that achieves fluoroarylation of gem-DFCPs uses NFSI (N-fluorobenzenesulfonimide) as electrophilic fluoro reagent and arenes as the C─H nucleophiles, enabling the synthesis of diverse CF3-containing scaffolds. It is proposed that a high-valent copper species plays an important role in the regioselective activation of the proximal C─C bond possibly via a σ-bond metathesis.
Collapse
Affiliation(s)
- Xiuli Wu
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Xiangyu Song
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| | - Ying Xia
- West China School of Public Health and West China Fourth HospitalWest China‐PUMC C.C. Chen Institute of Healthand State Key Laboratory of BiotherapySichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Zeng Y, Jiang ZT, Xia Y. Selectivity in Rh-catalysis with gem-difluorinated cyclopropanes. Chem Commun (Camb) 2024; 60:3764-3773. [PMID: 38501197 DOI: 10.1039/d4cc00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Small-ring chemistry is a fascinating field in organic chemistry. gem-Difluorinated cyclopropanes, a unique class of cyclopropanes, have garnered significant interest due to their intrinsic high reactivity. In this context, gem-difluorinated cyclopropanes have been extensively investigated as fluoroallylic synthons in Pd-catalyzed ring-opening/cross-coupling reactions for the synthesis of monofluoroalkenes with linear or branched selectivity. In contrast, Rh-catalysis has revealed diverse selectivity in the reaction of gem-difluorinated cyclopropanes, such as regioselectivity, enantioselectivity, and chemoselectivity. This feature article aims to summarize our efforts towards developing Rh-catalyzed reactions of gem-difluorinated cyclopropanes, briefly discussing the design, selectivity, reaction mechanisms and future research prospects.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Itoh T, Hayase S, Nokami T. Synthesis of Selectively gem-Difluorinated Molecules; Chiral gem-Difluorocyclopropanes via Chemo-Enzymatic Reaction and gem-Difluorinated Compounds via Radical Reaction. CHEM REC 2023; 23:e202300028. [PMID: 36949016 DOI: 10.1002/tcr.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The incorporation of fluorine atoms into an organic compound can alter the chemical reactivity or biological activity of the resulting compound due to the strong electron withdrawing nature of the fluorine atom. We have synthesized many original gem-difluorinated compounds and described the results in four sections. The first section describes the synthesis of optically active-gem-difluorocyclopropanes via the chemo-enzymatic reaction; we applied these compounds to liquid crystalline molecules, then further discovered a potent DNA cleavage activity for the gem-difluorocyclopropane derivatives. The second section describes the synthesis of selectively gem-difluorinated compounds via a radical reaction; we synthesized fluorinated analogues of a sex pheromone of the male African sugarcane borer, Eldana saccharina, and used the compounds as proof for investigating the origin of pheromone molecule recognition on the receptor protein. The third involves the synthesis of 2,2-difluorinated-esters by visible light-driven radical addition of 2,2-difluoroacetate with alkenes or alkynes in the presence of an organic pigment. The last section describes the synthesis of gem-difluorinated compounds via the ring-opening of gem-difluorocyclopropanes. We further developed a novel method of synthesizing gem-difluorohomoallylic alcohols via the ring-opening of gem-difluorocyclopropane and aerobic oxidation by photo-irradiation in the presence of an organic pigment. Since gem-difluorinated compounds that were prepared by the present method have two olefinic moieties with a different reactivity at the terminal position, we accomplished the synthesis of four types of gem-difluorinated cyclic alkenols via the ring-closing-metathesis (RCM) reaction.
Collapse
Affiliation(s)
- Toshiyuki Itoh
- Toyota Physical and Chemical Research Institute, Emeritus Professor of Tottori University, 41-1 Yokomichi, 480-1192, Nagakute city, Aichi, Japan
| | - Shuichi Hayase
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, 680-8552, Tottori, Japan
| |
Collapse
|
8
|
Mancinelli JP, Kong WY, Guo W, Tantillo DJ, Wilkerson-Hill SM. Borane-Catalyzed C-F Bond Functionalization of gem-Difluorocyclopropenes Enables the Synthesis of Orphaned Cyclopropanes. J Am Chem Soc 2023; 145:17389-17397. [PMID: 37494703 DOI: 10.1021/jacs.3c05278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Herein, we disclose an approach to synthesize tert-alkyl cyclopropanes by leveraging C-F bond functionalization of gem-difluorocyclopropenes using tris(pentafluorophenyl)borane catalysis. The reaction proceeds through the intermediacy of a fluorocyclopropenium ion, which was confirmed by the isolation of [Ph2(C6D5)C3]+[(C6F5)3BF]-. We found that silylketene acetal nucleophiles were optimal reaction partners with fluorocyclopropenium ion intermediates yielding fully substituted cyclopropenes functionalized with two α-tert-alkyl centers (63-93% yield). The regioselectivity of the addition to cyclopropenium ions is controlled by their steric and electronic properties and enables access to 3,3-bis(difluoromethyl)cyclopropenes in short order. The resulting cyclopropene products are readily reduced to the corresponding orphaned cyclopropanes under hydrogenation conditions. Quantum chemical calculations reveal the nature of the C-F bond cleavage steps and provide evidence for catalysis by boron and not silylated oxonium ions, though Si-F bond formation is the enthalpic driving force for the reaction.
Collapse
Affiliation(s)
- Joseph P Mancinelli
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Wentao Guo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Zhao YR, Ma ZY, Liu L, Gao P, Duan XH, Hu M. Synthesis of α-Difluoromethylene Ethers via Photoredox-Induced Hyperconjugative Ring Opening of gem-Difluorocyclopropanes. J Org Chem 2023; 88:3787-3793. [PMID: 36827360 DOI: 10.1021/acs.joc.2c03062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Fluorinated compounds have found widespread applications in pharmaceuticals, agrochemicals, and materials science. Precise construction of α-difluoromethylene ether (CF2-O) moiety in organic molecules is of high demand. Herein, a visible light-promoted reaction protocol for the synthesis of α-difluoromethylene ether from gem-difluorocyclopropane is described. The key ring-opening step is induced by hyperconjugative interaction of cyclopropane with photo-oxidized aromatic rings. This reaction is easy scale-up, and the products bearing a synthetic handle enable their further manipulation.
Collapse
Affiliation(s)
- Yu-Rou Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhi-Yong Ma
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Louis-Goff T, Trinh HV, Chen E, Rheingold AL, Hyvl J. Synthesis of Chiral Hypervalent Trifluoromethyl Organobismuth Complexes and Enantioselective Olefin Difluorocarbenation Screenings. Chempluschem 2023; 88:e202200450. [PMID: 36782373 DOI: 10.1002/cplu.202200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Two hypervalent trifluoromethyl organobismuth complexes were prepared from commercially available chiral amines, (R)-1-cyclohexylethylamine and (1R, 2R, 3R, 5S)-(-)-isopinocampheylamine; however, only the complex from the latter amine was prepared as a single stereoisomer. Both organobismuth complexes were fully characterized by NMR spectroscopy and single-crystal X-ray crystallography, revealing that the structures were similar to previously reported complexes with a hypervalent Bi-N bond. The complexes were catalytically active in olefin difluorocarbenation with Ruppert-Prakash reagent (TMS-CF3 ) used as a terminal source of CF2 . The catalyst derived from isopinocampheylamine was screened with three prochiral olefins of various reactivity in DCM and toluene. All reactions afforded the 1,1-difluorocyclopropanes in good yields, but no enantiomeric excess was observed.
Collapse
Affiliation(s)
- Thomas Louis-Goff
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| | - Huu Vinh Trinh
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: Chemical Engineering in Advanced Materials and Renewable Energy Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Eileen Chen
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA.,Present Address: John A. Burns School of Medicine, 651 Ilalo St, Honolulu, HI, 96813, USA
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego La Jolla, California, 92093, USA
| | - Jakub Hyvl
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
12
|
Zeng Y, Yang H, Du J, Huang Q, Huang G, Xia Y. Rh-catalyzed regio-switchable cross-coupling of gem-difluorinated cyclopropanes with allylboronates to structurally diverse fluorinated dienes. Chem Sci 2022; 13:12419-12425. [PMID: 36382270 PMCID: PMC9629036 DOI: 10.1039/d2sc04118a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
The control of linear/branched selectivity is one of the major focuses in transition-metal catalyzed allyl-allyl cross-coupling reactions, in which bond connection occurs at the terminal site of both the allyl fragments forming different types of 1,5-dienes. Herein, terminal/internal regioselectivity is investigated and found to be switchable in allyl-allyl cross-coupling reactions between gem-difluorinated cyclopropanes and allylboronates. The controlled terminal/internal regioselectivity arises from the fine-tuning of the rhodium catalytic system. Fluorinated 1,3-dienes, 1,4-dienes and 1,5-dienes are therefore produced in good yields with respectively isomerized terminal, internal, and terminal regioselectivity.
Collapse
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Hui Yang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Jiayi Du
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| | - Qin Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Guoliang Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing 100084 China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University Chengdu 610041 China
| |
Collapse
|
13
|
Lv L, Qian H, Li Z. Catalytic Diversification of gem‐Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
14
|
Jiang ZT, Chen Z, Zeng Y, Shi JL, Xia Y. Enantioselective Formation of All-Carbon Quaternary Stereocenters in gem-Difluorinated Cyclopropanes via Rhodium-Catalyzed Stereoablative Kinetic Resolution. Org Lett 2022; 24:6176-6181. [PMID: 35951978 DOI: 10.1021/acs.orglett.2c02410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report an effective method to offer chiral gem-difluorinated cyclopropanes containing an all-carbon quaternary stereocenter by rhodium-catalyzed stereoablative kinetic resolution. The activation of a sterically hindered all-carbon quaternary C-C bond through oxidative addition with a chiral rhodium complex is proposed as the enantiodetermining step. A wide range of gem-difluorinated cyclopropanes can be obtained with excellent ee values (ee = 87% to >99.9%), which are demonstrated to be useful chiral fluorine-containing building blocks by a series of postfunctionalizations.
Collapse
Affiliation(s)
- Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhengzhao Chen
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jiang-Ling Shi
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Zeng Y, Gao H, Zhu Y, Jiang ZT, Lu G, Xia Y. Site-Divergent Alkenyl C–H Fluoroallylation of Olefins Enabled by Tunable Rhodium Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaxin Zeng
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yulei Zhu
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhong-Tao Jiang
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Sekine K, Akaishi D, Konagaya K, Ito S. Copper-Catalyzed Enantioselective Hydrosilylation of gem-Difluorocyclopropenes Leading to a Stereochemical Study of the Silylated gem-Difluorocyclopropanes. Chemistry 2022; 28:e202200657. [PMID: 35393679 PMCID: PMC9321851 DOI: 10.1002/chem.202200657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Optically active cyclopropanes have been widely investigated especially from the views of pharmaceutical and agrochemical industries, and substituting one of the methylenes with the difluoromethylene unit should be promising for developing novel biologically relevant compounds and functional materials. In this paper, the copper‐catalyzed enantioselective hydrosilylation of gem‐difluorocyclopropenes to provide the corresponding chiral gem‐difluorocyclopropanes is presented. The use of copper(I) chloride, chiral ligands including bidentate BINAPs and monodentate phosphoramidites, and silylborane Me2PhSi‐Bpin accompanying sodium tert‐butoxide in methanol was appropriate for the enantioselective hydrosilylation of the strained C=C double bond, and the resultant chiral difluorinated three‐membered ring was unambiguously characterized. Subsequent activation of the silyl groups in enantio‐enriched gem‐difluorocyclopropanes showed substantial reduction of the enantiopurity, indicating cleavage of the distal C−C bond leading to the transient acyclic intermediates.
Collapse
Affiliation(s)
- Keisuke Sekine
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Dai Akaishi
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kakeru Konagaya
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Shigekazu Ito
- Department of Applied Chemistry, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H113 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
17
|
Jia J, Yuan F, Zhang Z, Song X, Hu F, Xia Y. Copper-Catalyzed Ring-Opening Defluoroborylation of gem-Difluorinated Cyclobutenes: A General Route to Bifunctional 1,3-Dienes and Their Applications. Org Lett 2022; 24:1985-1990. [PMID: 35238573 DOI: 10.1021/acs.orglett.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The exploration of the reactivity of gem-difluorinated small-size rings has continuously drawn attention in recent years but is limited to three-membered carbocycles. Herein we report a copper-catalyzed reaction of gem-fluorinated cyclobutenes with bis(pinacolato)diboron (B2pin2). A sequence of defluoroborylation and a ring-opening process produces B,F-bifunctional 1,3-dienes in a stereoselective manner. The transformation together with the efficient downstream coupling of the boronate and the fluoride moieties collectively constitutes a modular route to highly functionalized and stereocontrolled 1,3-dienes.
Collapse
Affiliation(s)
- Jie Jia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fushan Yuan
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zihao Zhang
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Maruno K, Niina K, Nagata O, Shibata N. Synthesis of an Eccentric Electron-Deficient Fluorinated Motif, Tetrafluoro-λ 6-sulfanyl gem-Difluorocyclopropenes. Org Lett 2022; 24:1722-1726. [PMID: 35199518 DOI: 10.1021/acs.orglett.2c00358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluoro-functionalization is now recognized as a critical strategy in drug discovery; however, the accessible fluoro-functional groups are limited. We herein introduce an eccentric, fully fluorinated motif, trans-tetrafluoro-λ6-sulfanyl gem-difluorocyclopropene 2. This novel motif is highly lipophilic and polarized, enabling a connection of two independent groups via three continuous atoms with a large angle of pseudo cis configuration. The target motif was synthesized via a [2+1] cycloaddition of electron-deficient (hetero)aryl-SF4-alkynes 1 with an electrophilic difluorocarbene source.
Collapse
Affiliation(s)
- Koki Maruno
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Kiyoteru Niina
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Osamu Nagata
- Pharmaceutical Division, Ube Industries, Ltd., Seavans North Building, 1-2-1 Shibaura, Minato-ku, Tokyo 105-8449, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences and Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Mąkosza M, Fedoryński M. Dichlorocarbene and analogs: discovery, properties and reactions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chen Z, Xie X, Chen W, Luo N, Li X, Yu F, Huang J. Facile access to the 2,2-difluoro-2,3-dihydrofuran skeleton without extra additives: DMF-promoted difluorocarbene formation of ClCF 2CO 2Na. Org Biomol Chem 2022; 20:8037-8041. [DOI: 10.1039/d2ob01542k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A practical and facile difluorocarbene-triggered cycloaddition reaction of enaminones was developed, which delivered 2,2-difluoro-2,3-dihydrofurans without any extra additives.
Collapse
Affiliation(s)
- Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
21
|
Carbenes, related intermediates, and small-sized cycles: contribution from Professor Nefedov’s laboratory. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Mlostoń G, Kula K, Jasiński R. A DFT Study on the Molecular Mechanism of Additions of Electrophilic and Nucleophilic Carbenes to Non-Enolizable Cycloaliphatic Thioketones. Molecules 2021; 26:5562. [PMID: 34577032 PMCID: PMC8466156 DOI: 10.3390/molecules26185562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanisms of addition of dihalocarbenes and dimethoxycarbene to thioketones derived from 2,2,4,4-tetrmethylcyclobutane-1,3-dione were examined on the basis of the DFT wb97xd/6-311g(d,p)(PCM) calculations. Obtained results demonstrated that the examined processes exhibit polar nature and in the case of electrophilic dichloro-, and dibromocarbenes are initiated by the attack of carbene species onto the sulfur atom of the C=S group. Remarkably, reactions involving more electrophilic carbenes (dichloro-, and dibromocarbene) proceeds via stepwise mechanism involving thiocarbonyl ylide as a transient intermediate. In contrast, analogous reactions with nucleophilic dimethoxycarbene occur via a single step reaction, which can be considered as the [2 + 1] cycloaddition reaction initiated by the attack onto the C=S bond. A computational study showed that difluorocarbene tends to react as a nucleophilic species and resembles rather dimethoxycarbene and not typical dihalocarbene species. Significantly higher reactivity of the thioketone unit in comparison to the ketone group, both present in 3-thioxo-2,2,4,4-tetramthylcyclobutanone molecule, was rationalized in the light of DFT computational study.
Collapse
Affiliation(s)
- Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
| | - Karolina Kula
- Institute of Organic Chemistry & Technology, Cracow University of Technology, Warszawska 24, PL-31-155 Krakow, Poland;
| | - Radomir Jasiński
- Institute of Organic Chemistry & Technology, Cracow University of Technology, Warszawska 24, PL-31-155 Krakow, Poland;
| |
Collapse
|
23
|
Goetz AE, Becirovic H, Blasberg F, Chen B, Clarke HJ, Colombo M, Daddario P, Damon DB, Depretz C, Dumond YR, Grilli MD, Han L, Houck TL, Johnson AM, Jones KN, Jung J, Leeman M, Liu F, Lu CV, Mangual EJ, Nelson JD, Puchlopek-Dermenci ALA, Ruggeri SG, Simonds PA, Sitter B, Virtue DE, Wang S, Yu L, Yu T. Large-Scale Cyclopropanation of Butyl Acrylate with Difluorocarbene and Classical Resolution of a Key Fluorinated Building Block. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam E. Goetz
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Husein Becirovic
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Florian Blasberg
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Bo Chen
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Hugh J. Clarke
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Pedro Daddario
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David B. Damon
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christelle Depretz
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | - Yves R. Dumond
- AMRI, Euticals S.A.S., Zone Industrielle de Laville, 47240 Bon-Encontre, France
| | | | - Lu Han
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tim L. Houck
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amber M. Johnson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kris N. Jones
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jörg Jung
- AMRI, Euticals GmbH, Industriepark Höchst D569, 65926 Frankfurt am Main, Germany
| | - Michel Leeman
- Symeres BV, Kadijk 3, 9747 AT Groningen, The Netherlands
| | - Fangfang Liu
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cuong V. Lu
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Emilio J. Mangual
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jade D. Nelson
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Angela L. A. Puchlopek-Dermenci
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sally Gut Ruggeri
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paul A. Simonds
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Barbara Sitter
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel E. Virtue
- Analytical Research and Development, Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Shuguang Wang
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Lixin Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| | - Tao Yu
- Porton R&D Center, No. 1299 Ziyue Rd, Zizhu Science Park, Minhang District, Shanghai, China
| |
Collapse
|