1
|
Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Synthetic Methods for Azaheterocyclic Phosphonates and Their Biological Activity: An Update 2004-2024. Chem Rev 2024; 124:7907-7975. [PMID: 38809666 DOI: 10.1021/acs.chemrev.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The increasing importance of azaheterocyclic phosphonates in the agrochemical, synthetic, and medicinal field has provoked an intense search in the development of synthetic routes for obtaining novel members of this family of compounds. This updated review covers methodologies established since 2004, focusing on the synthesis of azaheterocyclic phosphonates, of which the phosphonate moiety is directly substituted onto to the azaheterocyclic structure. Emphasizing recent advances, this review classifies newly developed synthetic approaches according to the ring size and providing information on biological activities whenever available. Furthermore, this review summarizes information on various methods for the formation of C-P bonds, examining sustainable approaches such as the Michaelis-Arbuzov reaction, the Michaelis-Becker reaction, the Pudovik reaction, the Hirao coupling, and the Kabachnik-Fields reaction. After analyzing the biological activities and applications of azaheterocyclic phosphonates investigated in recent years, a predominant focus on the evaluation of these compounds as anticancer agents is evident. Furthermore, emerging applications underline the versatility and potential of these compounds, highlighting the need for continued research on synthetic methods to expand this interesting family.
Collapse
Affiliation(s)
- Martha C Mayorquín-Torres
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Andreas Simoens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Eli Bonneure
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Yan S, Schöpe PC, Lewis J, Putzker K, Uhrig U, Specker E, von Kries JP, Lindemann P, Omran A, Sanchez-Ibarra HE, Unger A, Zischinsky ML, Klebl B, Walther W, Nazaré M, Kobelt D, Stein U. Discovery of tetrazolo-pyridazine-based small molecules as inhibitors of MACC1-driven cancer metastasis. Biomed Pharmacother 2023; 168:115698. [PMID: 37865992 DOI: 10.1016/j.biopha.2023.115698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Metastasis is directly linked to poor prognosis of cancer patients and warrants search for effective anti-metastatic drugs. MACC1 is a causal key molecule for metastasis. High MACC1 expression is prognostic for metastasis and poor survival. Here, we developed novel small molecule inhibitors targeting MACC1 expression to impede metastasis formation. We performed a human MACC1 promoter-driven luciferase reporter-based high-throughput screen (HTS; 118.500 compound library) to identify MACC1 transcriptional inhibitors. HTS revealed 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds as efficient transcriptional inhibitors of MACC1 expression, able to decrease MACC1-induced cancer cell motility in vitro. Structure-activity relationships identified the essential inhibitory core structure. Best candidates were evaluated for metastasis inhibition in xenografted mouse models demonstrating metastasis restriction. ADMET showed high drug-likeness of these new candidates for cancer therapy. The NFκB pathway was identified as one mode of action targeted by these compounds. Taken together, 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds are effective MACC1 inhibitors and pose promising candidates for anti-metastatic therapies particularly for patients with MACC1-overexpressing cancers, that are at high risk to develop metastases. Although further preclinical and clinical development is necessary, these compounds represent important building blocks for an individualized anti-metastatic therapy for solid cancers.
Collapse
Affiliation(s)
- Shixian Yan
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Joe Lewis
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Kerstin Putzker
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Ulrike Uhrig
- The European Molecular Biology Laboratory, EMBL, Meyerhofstraße 1, 69120 Heidelberg, Germany
| | - Edgar Specker
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Peter Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Hector E Sanchez-Ibarra
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Anke Unger
- Lead Discovery Center GmbH, LDC, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH, LDC, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany; German Cancer Consortium (DKTK Partnersite Berlin), Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Huang W, Tang Y, Imler GH, Parrish DA, Shreeve JM. Nitrogen-Rich Tetrazolo[1,5- b]pyridazine: Promising Building Block for Advanced Energetic Materials. J Am Chem Soc 2020; 142:3652-3657. [PMID: 32003985 DOI: 10.1021/jacs.0c00161] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two metal-free explosives, tetrazolo[1,5-b]pyridazine-containing molecules [6-azido-8-nitrotetrazolo[1,5-b]pyridazine-7-amine (3at) and 8-nitrotetrazolo[1,5-b]pyridazine-6,7-diamine (6)], were obtained via straightforward two-step synthetic routes from commercially available reagents. Compound 3at displays an excellent detonation performance (Dv = 8746 m s-1 and P = 31.5 GPa) that is superior to commercial primary explosives such as lead azide and diazodinitrophenol (DDNP). Compound 6 has superior thermal stability, remarkable insensitivity, and good detonation performance, strongly suggesting it as an acceptable secondary explosive. The initiating ability of compound 3at has been tested by detonating 500 mg of RDX with a surprisingly low minimum primary charge of 40 mg. The extraordinary initiating power surpasses conventional primary explosives, such as commercial DDNP (70 mg) and reported 6-nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide (ICM-103) (60 mg). The outstanding detonation power of 3at contributes to its future prospects as a promising green primary explosive. In addition, the environmentally benign methodology for the synthesis of 3at effectively shortens the time from laboratory-scale research to practical applications.
Collapse
Affiliation(s)
- Wei Huang
- Nanjing University of Science and Technology , Nanjing , 210094 , China
| | - Yongxing Tang
- Nanjing University of Science and Technology , Nanjing , 210094 , China.,Department of Chemistry , University of Idaho , Moscow , Idaho 83844-2343 , United States
| | - Gregory H Imler
- Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| | - Damon A Parrish
- Naval Research Laboratory , 4555 Overlook Avenue , Washington, D.C. 20375 , United States
| | - Jean'ne M Shreeve
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844-2343 , United States
| |
Collapse
|
4
|
Aelami Z, Maghsoodlou MT, Heydari R. Three‐Component Synthesis of Tetrazolo Anthraquinone as a Representation of a New Heterocyclic System. ChemistrySelect 2019. [DOI: 10.1002/slct.201901096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zahra Aelami
- Department of ChemistryFaculty of Sciences University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Malek Taher Maghsoodlou
- Department of ChemistryFaculty of Sciences University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| | - Reza Heydari
- Department of ChemistryFaculty of Sciences University of Sistan and Baluchestan P.O. Box 98135-674 Zahedan Iran
| |
Collapse
|
5
|
Abdou WM, Sabry E, Shaddy AA. Synthesis approach and biological activity evaluation of a series of 1,3,2-oxazaphosphole-2-oxides against inflammation and nociception. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hernández-Vázquez E, Chávez-Riveros A, Nieto-Camacho A, Miranda LD. A Two-Step Multicomponent Synthetic Approach and Anti-inflammatory Evaluation of N-Substituted 2-Oxopyrazines. ChemMedChem 2019; 14:132-146. [PMID: 30430749 DOI: 10.1002/cmdc.201800634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Inflammation is widely reported as a main factor for the development of chronic diseases such as cancer, diabetes, and even metabolic syndrome. Thus, the search for novel anti-inflammatory compounds is required. Herein we describe the synthesis of a collection of peptidic pyrazinones by a convenient approach involving a multicomponent isocyanide-based reaction followed by a tandem deprotection/oxidative cyclization step. This series of compounds were tested for their potential anti-inflammatory capacity in an in vivo murine model, and four compounds were identified to inhibit tetradecanoylphorbol acetate (TPA)-induced edema by more than 75 %. The two most active compounds, N-benzyl-2-(4-hydroxy-3,5-dimethoxyphenyl)-2-[2-oxopyrazin-1(2H)-yl]acetamide (10 o) and N-cyclohexyl-2-[2-oxopyrazin-1(2H)-yl]-2-[4-(trifluoromethyl)phenyl]acetamide (10 x), with methyl and trifluoromethyl groups, were also able to decrease myeloperoxidase activity and leukocyte infiltration. Moreover, 10 x decreased the thickness of TPA-treated mouse ears, as observed in histological analysis of the tissues.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Department of Organic Chemistry, Instituto de Química, UNAM, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, México, D.F., 04510, México
| | - Alejandra Chávez-Riveros
- Department of Organic Chemistry, Instituto de Química, UNAM, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, México, D.F., 04510, México
| | - Antonio Nieto-Camacho
- Department of Organic Chemistry, Instituto de Química, UNAM, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, México, D.F., 04510, México
| | - Luis D Miranda
- Department of Organic Chemistry, Instituto de Química, UNAM, Circuito Exterior S.N., Ciudad Universitaria, Coyoacán, México, D.F., 04510, México
| |
Collapse
|
7
|
Romero-Estudillo I, Viveros-Ceballos JL, Cazares-Carreño O, González-Morales A, de Jesús BF, López-Castillo M, Razo-Hernández RS, Castañeda-Corral G, Ordóñez M. 000Synthesis of new α-aminophosphonates: Evaluation as anti-inflammatory agents and QSAR studies. Bioorg Med Chem 2018; 27:2376-2386. [PMID: 30635220 DOI: 10.1016/j.bmc.2018.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 11/30/2022]
Abstract
In this paper, we report the synthesis of a new series of α-aminophosphonates derivatives based in an efficient three-component reaction. All compounds prepared showed significant anti-inflammatory activity, being the compounds 1a, 1c, 1d, 1f, 2b and 2c the most promising ones, in terms of maximal efficacy (over 95%), potency (ED50 range between 0.7 and 10.1 mg/ear) and relative potency (range from 0.04 to 0.67). Compounds 1a, 1c, 1d and 1f significantly decrease the number of neutrophils (range from 46.7 to 63.0%) and monocytes (18.9-34.1%) in blood samples from the orbital sinus. Additionally, QSAR model revealed that the spherical molecular shape and the location of the HOMO on the phenyl ring improves the anti-inflammatory activity of the compounds. The values of R2, Q2, s and F statistical parameters and the QUIK, asymptotic Q2 and Overfitting rules validate the descriptive and predictive ability of the QSAR model. Altogether these results suggest that these new α-aminophosphonates are potential agents for the treatment of inflammation.
Collapse
Affiliation(s)
- Ivan Romero-Estudillo
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - José Luis Viveros-Ceballos
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Obed Cazares-Carreño
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Angelina González-Morales
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Berenice Flores de Jesús
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros esquina Iztaccíhuatl s/n, Cuernavaca 62350, Mexico
| | - Misael López-Castillo
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros esquina Iztaccíhuatl s/n, Cuernavaca 62350, Mexico
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Gabriela Castañeda-Corral
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros esquina Iztaccíhuatl s/n, Cuernavaca 62350, Mexico.
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico.
| |
Collapse
|
8
|
Barghash RF, Geronikaki A, Abdou WM. Synthesis of a Series of Substituted Thiazole Derivatives: New COX‐2 Enzyme Inhibitors for Colon Cancer and Inflammation Treatment. ChemistrySelect 2018. [DOI: 10.1002/slct.201802969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Reham F. Barghash
- Chemical Research Industries DivisionNational Research Centre Dokki. D-12622, Giza Egypt
| | - Athina Geronikaki
- School of PharmacyAristotle, University of Thessaloniki, Thessaloniki Greece
| | - Wafaa M. Abdou
- Chemical Research Industries DivisionNational Research Centre Dokki. D-12622, Giza Egypt
| |
Collapse
|
9
|
Synthesis and antidiabetic/antioxidant properties of nucleobase-bearing phosphor ester motifs. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2034-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mu QC, Lv JY, Chen MY, Bai XF, Chen J, Xia CG, Xu LW. Bimetallic copper and zinc-catalyzed oxidative cycloaddition of 3-aminopyridazines and nitriles: a direct synthesis of 1,2,4-triazolo[1,5-b]pyridazines via C–N and N–N bond-forming process. RSC Adv 2017. [DOI: 10.1039/c7ra06727e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
One-pot formation of 1,2,4-triazolo[1,5-b]pyridazine derivatives is presented in this manuscript, in which the targets are offered via cooperative Cu(i)/Zn(ii)-catalyzed tandem C–N addition and I2/KI-mediated intramolecular N–N bond formation.
Collapse
Affiliation(s)
- Qiu-Chao Mu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
- P. R. China
| | - Ji-Yuan Lv
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Mu-Yi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Xing-Feng Bai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
- P. R. China
| | - Jing Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
- P. R. China
| | - Chun-Gu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
- P. R. China
| | - Li-Wen Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
- P. R. China
| |
Collapse
|
11
|
Souza MTDS, Almeida JRGDS, Araujo AADS, Duarte MC, Gelain DP, Moreira JCF, dos Santos MRV, Quintans-Júnior LJ. Structure–activity relationship of terpenes with anti-inflammatory profile – a systematic review. Basic Clin Pharmacol Toxicol 2015; 115:244-56. [PMID: 25275147 DOI: 10.1111/bcpt.12221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that in spite of having available treatments, their side effects limit their usefulness. Because of this, natural products have been the subject of incessant studies, among which the class of terpenes stands out. They have been the source of study for the development of anti-inflammatory drugs, once their chemical diversity is well suited to provide skeleton for future anti-inflammatory drugs. This systematic review reports the studies present in the literature that evaluate the anti-inflammatory activity of terpenes suffering any change in their structures, assessing whether these changes also brought changes in their effects. The search terms anti-inflammatory agents, terpenes, and structure–activity relationship were used to retrieve English language articles in SCOPUS, PUBMED and EMBASE published between January 2002 and August 2013. Twenty-seven papers were found concerning the structural modification of terpenes with the evaluation of antiinflammatory activity. The data reviewed here suggest that modified terpenes are an interesting tool for the development of new anti-inflammatory drugs.
Collapse
|
12
|
Guimarães AG, Serafini MR, Quintans-Júnior LJ. Terpenes and derivatives as a new perspective for pain treatment: a patent review. Expert Opin Ther Pat 2014; 24:243-65. [DOI: 10.1517/13543776.2014.870154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|