1
|
Ye C, You Y, Li W, Jing T, Mo M, Qiao M, Yu Z. Diversity of Trichoderma species associated with the black rot disease of Gastrodia elata, including four new species. Front Microbiol 2024; 15:1420156. [PMID: 39132139 PMCID: PMC11310069 DOI: 10.3389/fmicb.2024.1420156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Trichoderma species establish symbiotic relationships with plants through both parasitic and mutualistic mechanisms. While some Trichoderma species act as plant pathogenic fungi, others utilize various strategies to protect and enhance plant growth. Methods Phylogenetic positions of new species of Trichoderma were determined through multi-gene analysis relying on the internal transcribed spacer (ITS) regions of the ribosomal DNA, the translation elongation factor 1-α (tef1-α) gene, and the RNA polymerase II (rpb2) gene. Additionally, pathogenicity experiments were conducted, and the aggressiveness of each isolate was evaluated based on the area of the cross-section of the infected site. Results In this study, 13 Trichoderma species, including 9 known species and 4 new species, namely, T. delicatum, T. robustum, T. perfasciculatum, and T. subulatum were isolated from the diseased tubers of Gastrodia elata in Yunnan, China. Among the known species, T. hamatum had the highest frequency. T. delicatum belonged to the Koningii clade. T. robustum and T. perfasciculatum were assigned to the Virens clade. T. subulatum emerged as a new member of the Spirale clade. Pathogenicity experiments were conducted on the new species T. robustum, T. delicatum, and T. perfasciculatum, as well as the known species T. hamatum, T. atroviride, and T. harzianum. The infective abilities of different Trichoderma species on G. elata varied, indicating that Trichoderma was a pathogenic fungus causing black rot disease in G. elata. Discussion This study provided the morphological characteristics of new species and discussed the morphological differences with phylogenetically proximate species, laying the foundation for research aimed at preventing and managing diseases that affect G. elata.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Ma Y, Li Y, Yang S, Li Y, Zhu Z. Biocontrol Potential of Trichoderma asperellum Strain 576 against Exserohilum turcicum in Zea mays. J Fungi (Basel) 2023; 9:936. [PMID: 37755043 PMCID: PMC10532967 DOI: 10.3390/jof9090936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Maize is a crucial cereal crop in China, serving both as a staple food and an essential industrial resource. Northern corn leaf blight (NCLB) is a disease of corn caused by a fungus, Exserohilum turcicum (sexual stage Setosphaeria turcica). This study aimed to assess the biocontrol potential of various Trichoderma strains against Exserohilum turcicum 101 in Jilin, China. Through dual culture tests, the Trichoderma strains were categorized into four groups based on their antagonistic abilities. Eleven Trichoderma strains exhibited strong antagonistic behavior, with comparable or faster growth rates than E. turcicum 101. Microscopic observations confirmed that T. asperellum 576 hyphae effectively encircled E. turcicum 101 hyphae, reinforcing their antagonistic behavior. The production of non-volatile and volatile substances by the Trichoderma strains was evaluated, with T. asperellum 576 showing the highest potency in producing non-volatile and volatile substances, leading to an impressive 80.81% and 65.86% inhibition of E. turcicum 101 growth. Remarkably, co-culture suspensions of T. asperellum 576 + E. turcicum 101 and T. atroviride 393 + E. turcicum 101 exhibited strong antifungal activity. Furthermore, the activities of chitinase, β-1.3-glucanase, and cellulase were evaluated using the 3, 5-dinitrosalicylic acid (DNS) method. T. asperellum 576 + E. turcicum 101 displayed stronger cell wall degradation enzyme activity compared to T. atroviride 393 + E. turcicum 101, with values of 8.34 U/mL, 3.42 U/mL, and 7.75 U/mL, respectively. In greenhouse conditions, the application of a 107 spores/mL conidia suspension of T. asperellum 576 significantly enhanced maize seed germination and plant growth while effectively suppressing E. turcicum 101 infection. Maize seedlings inoculated/treated with both E. turcicum 101 and T. asperellum 576 demonstrated substantial improvements compared to those inoculated solely with E. turcicum 101. The T. asperellum 576 treatment involved a 107 spores/mL conidia suspension applied through a combination of foliar spray and soil drench. These findings highlight T. asperellum 576 as a promising biocontrol candidate against northern leaf blight in maize. Its antagonistic behavior, production of inhibitory compounds, and promotion of plant growth all contribute to its potential as an effective biocontrol agent for disease management.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoxiang Zhu
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Y.M.); (Y.L.); (S.Y.); (Y.L.)
| |
Collapse
|
3
|
Ye C, Jing T, Sha Y, Mo M, Yu Z. Two new Trichoderma species (Hypocreales, Hypocreaceae) isolated from decaying tubers of Gastrodiaelate. MycoKeys 2023; 99:187-207. [PMID: 37719304 PMCID: PMC10504636 DOI: 10.3897/mycokeys.99.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Species of Trichoderma are widely distributed around the world. In this study, two new species in Trichoderma, named as T.albidum and T.variegatum, were introduced and illustrated. These species were isolated from diseased tubers of Gastrodiaelata in China and identified based on morphological characteristics and multi-gene sequence analyses of three loci that is the internal transcribed spacer regions of the ribosomal DNA (ITS), the translation elongation factor 1-α encoding gene (tef1-α) and the gene encoding the second largest nuclear RNA polymerase subunit (rpb2). Distinctions between the new species and their close relatives were discussed. According to results of the phylogenetic analyses, T.albidum belonged to the Harzianum clade and T.variegatum are grouped with species of the Spirale clade. The expansion of two clades provided research foundations for the prevention and control of tuber diseases in G.elata.
Collapse
Affiliation(s)
- Chuwen Ye
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Tingting Jing
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Yuru Sha
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
4
|
Pagnoni S, Oufensou S, Balmas V, Bulgari D, Gobbi E, Forgia M, Migheli Q, Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol 2023; 9:vead042. [PMID: 37692893 PMCID: PMC10491862 DOI: 10.1093/ve/vead042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Trichoderma genus includes soil-inhabiting fungi that provide important ecosystem services in their interaction with plants and other fungi, as well as biocontrol of fungal plant diseases. A collection of Trichoderma isolates from Sardinia has been previously characterized, but here we selected 113 isolates, representatives of the collection, and characterized their viral components. We carried out high-throughput sequencing of ribosome-depleted total RNA following a bioinformatics pipeline that detects virus-derived RNA-directed RNA polymerases (RdRps) and other conserved viral protein sequences. This pipeline detected seventeen viral RdRps with two of them corresponding to viruses already detected in other regions of the world and the remaining fifteen representing isolates of new putative virus species. Surprisingly, eight of them are from new negative-sense RNA viruses, a first in the genus Trichoderma. Among them is a cogu-like virus, closely related to plant-infecting viruses. Regarding the positive-sense viruses, we report the presence of an 'ormycovirus' belonging to a recently characterized group of bisegmented single-stranded RNA viruses with uncertain phylogenetic assignment. Finally, for the first time, we report a bisegmented member of Mononegavirales which infects fungi. The proteins encoded by the second genomic RNA of this virus were used to re-evaluate several viruses in the Penicillimonavirus and Plasmopamonavirus genera, here shown to be bisegmented and encoding a conserved polypeptide that has structural conservation with the nucleocapsid domain of rhabdoviruses.
Collapse
Affiliation(s)
- Saul Pagnoni
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Safa Oufensou
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Virgilio Balmas
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Daniela Bulgari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Emanuela Gobbi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| | - Quirico Migheli
- Department of Agricultural Sciences and NRD—Desertification Research Center, University of Sassari, Viale Italia 39a, Sassari, Sardegna 07100, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce, 73, Torino 10135, Italy
| |
Collapse
|
5
|
Li Y, Hu Q, Zhang L, Xiang Z, Ma Q. Enhancement of Growth and Synthesis of Extracellular Enzymes of Morchella sextelata Induced by Co-culturing with Trichoderma. Curr Microbiol 2023; 80:235. [PMID: 37278966 DOI: 10.1007/s00284-023-03347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Trichoderma is a genus of common filamentous fungi that display a various range of lifestyles and interactions with other fungi. The interaction of Trichoderma with Morchella sextelata was explored in this study. Trichoderma sp. T-002 was isolated from a wild fruiting body of Morchella sextelata M-001 and identified as a closely related species of Trichoderma songyi based on morphological chracteristics and phylogenetic analysis of translation elongation factor1-alpha and inter transcribed spacer of rDNA. Further, we focussed on the influence of dry mycelia of T-002 on the growth and synthesis of extracellular enzymes of M-001. Among different treatments, M-001 showed the highest growth of mycelia with an optimal supplement of 0.33 g/100 mL of T-002. Activities of extracellular enzymes of M-001 were enhanced significantly by the optimal supplement treatment. Overall, T-002, a unique Trichoderma species, had a positive effect on mycelial growth and synthesis of extracellular enzymes of M-001.
Collapse
Affiliation(s)
- Yinghao Li
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Qin Hu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Liqiu Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Zhengyu Xiang
- Hubei Shengfeng Pharmacy Co. Ltd., Enshi, 445000, China
| | - Qiong Ma
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
6
|
Phylogenetic Analysis of Trichoderma Species Associated with Green Mold Disease on Mushrooms and Two New Pathogens on Ganoderma sichuanense. J Fungi (Basel) 2022; 8:jof8070704. [PMID: 35887460 PMCID: PMC9318549 DOI: 10.3390/jof8070704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Edible and medicinal mushrooms are extensively cultivated and commercially consumed around the world. However, green mold disease (causal agent, Trichoderma spp.) has resulted in severe crop losses on mushroom farms worldwide in recent years and has become an obstacle to the development of the Ganoderma industry in China. In this study, a new species and a new fungal pathogen on Ganoderma sichuanense fruitbodies were identified based on the morphological characteristics and phylogenetic analysis of two genes, the translation elongation factor 1-α (TEF1) and the second-largest subunit of RNA polymerase II (RPB2) genes. The new species, Trichoderma ganodermatigerum sp. nov., belongs to the Harzianum clade, and the new fungal pathogen was identified as Trichoderma koningiopsis. Furthermore, in order to better understand the interaction between Trichoderma and mushrooms, as well as the potential biocontrol value of pathogenic Trichoderma, we summarized the Trichoderma species and their mushroom hosts as best as possible, and the phylogenetic relationships within mushroom pathogenic Trichoderma species were discussed.
Collapse
|
7
|
Zhang GZ, Yang HT, Zhang XJ, Zhou FY, Wu XQ, Xie XY, Zhao XY, Zhou HZ. Five new species of Trichoderma from moist soils in China. MycoKeys 2022; 87:133-157. [PMID: 35221753 PMCID: PMC8873192 DOI: 10.3897/mycokeys.87.76085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
Trichoderma isolates were collected from moist soils near a water source in different areas of China. ITS sequences were submitted to MIST (Multiloci Identification System for Trichoderma) and meets the Trichoderma [ITS76] standard. Combined analyses of phylogenetic analyses of both phylograms (tef1-α and rpb2) and morphological characteristics, revealed five new species of Trichoderma, namely Trichoderma hailarense, T. macrofasciculatum, T. nordicum, T. shangrilaense and T. vadicola. Phylogenetic analyses showed T. macrofasciculatum and T. shangrilaense belong to the Polysporum clade, T. hailarense, while T. nordicum and T. vadicola belong to the Viride clade. Each new taxon formed a distinct clade in phylogenetic analysis and have unique sequences of tef1-α and rpb2 that meet the Trichoderma new species standard. The conidiation of T. macrofasciculatum typically appeared in white pustules in concentric rings on PDA or MEA and its conidia had one or few distinctly verrucose. Conidiophores of T. shangrilaense are short and rarely branched, phialides usually curved and irregularly disposed. The aerial mycelium of T. hailarense and T. vadicola formed strands to floccose mat, conidiation tardy and scattered in tufts, conidiophores repeatedly rebranching in dendriform structure. The phialides of T. nordicum lageniform are curved on PDA and its conidia are globose to obovoidal and large.
Collapse
|
8
|
Zheng H, Qiao M, Lv Y, Du X, Zhang KQ, Yu Z. New Species of Trichoderma Isolated as Endophytes and Saprobes from Southwest China. J Fungi (Basel) 2021; 7:jof7060467. [PMID: 34207925 PMCID: PMC8230185 DOI: 10.3390/jof7060467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023] Open
Abstract
During the investigation of endophytic fungi diversity in aquatic plants and the fungal diversity in soil in southwest China, we obtained 208 isolates belonging to Trichoderma, including 28 isolates as endophytes from aquatic plants and 180 isolates as saprobes from soil, respectively. Finally, 23 new species of Trichoderma are recognized by further studies. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha (tef1) and gene encoding of the second largest nuclear RNA polymerase subunit (rpb2). The results revealed that the 23 new species are distributed in nine known clades. The morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives were compared and discussed. These include: Trichoderma achlamydosporum, T. amoenum, T. anaharzianum, T. anisohamatum, T. aquatica, T. asiaticum, T. asymmetricum, T. inaequilaterale, T. inconspicuum, T. insigne, T. obovatum, T. paraviride, T. pluripenicillatum, T. propepolypori, T. pseudoasiaticum, T. pseudoasperelloides, T. scorpioideum, T. simile, T. subazureum, T. subuliforme, T. supraverticillatum, T. tibetica, and T. uncinatum.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Min Qiao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Yifan Lv
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Xing Du
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, China; (H.Z.); (M.Q.); (Y.L.); (X.D.); (K.-Q.Z.)
- Correspondence:
| |
Collapse
|
9
|
Cai F, Druzhinina IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-020-00464-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractModern taxonomy has developed towards the establishment of global authoritative lists of species that assume the standardized principles of species recognition, at least in a given taxonomic group. However, in fungi, species delimitation is frequently subjective because it depends on the choice of a species concept and the criteria selected by a taxonomist. Contrary to it, identification of fungal species is expected to be accurate and precise because it should predict the properties that are required for applications or that are relevant in pathology. The industrial and plant-beneficial fungi from the genus Trichoderma (Hypocreales) offer a suitable model to address this collision between species delimitation and species identification. A few decades ago, Trichoderma diversity was limited to a few dozen species. The introduction of molecular evolutionary methods resulted in the exponential expansion of Trichoderma taxonomy, with up to 50 new species recognized per year. Here, we have reviewed the genus-wide taxonomy of Trichoderma and compiled a complete inventory of all Trichoderma species and DNA barcoding material deposited in public databases (the inventory is available at the website of the International Subcommission on Taxonomy of Trichodermawww.trichoderma.info). Among the 375 species with valid names as of July 2020, 361 (96%) have been cultivated in vitro and DNA barcoded. Thus, we have developed a protocol for molecular identification of Trichoderma that requires analysis of the three DNA barcodes (ITS, tef1, and rpb2), and it is supported by online tools that are available on www.trichokey.info. We then used all the whole-genome sequenced (WGS) Trichoderma strains that are available in public databases to provide versatile practical examples of molecular identification, reveal shortcomings, and discuss possible ambiguities. Based on the Trichoderma example, this study shows why the identification of a fungal species is an intricate and laborious task that requires a background in mycology, molecular biological skills, training in molecular evolutionary analysis, and knowledge of taxonomic literature. We provide an in-depth discussion of species concepts that are applied in Trichoderma taxonomy, and conclude that these fungi are particularly suitable for the implementation of a polyphasic approach that was first introduced in Trichoderma taxonomy by John Bissett (1948–2020), whose work inspired the current study. We also propose a regulatory and unifying role of international commissions on the taxonomy of particular fungal groups. An important outcome of this work is the demonstration of an urgent need for cooperation between Trichoderma researchers to get prepared to the efficient use of the upcoming wave of Trichoderma genomic data.
Collapse
|
10
|
Ding M, Chen W, Ma X, Lv B, Jiang S, Yu Y, Rahimi M, Gao R, Zhao Z, Cai F, Druzhinina I. Emerging salt marshes as a source of Trichoderma arenarium sp. nov. and other fungal bioeffectors for biosaline agriculture. J Appl Microbiol 2021; 130:179-195. [PMID: 32590882 PMCID: PMC7818382 DOI: 10.1111/jam.14751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 01/21/2023]
Abstract
AIMS Sustainable agriculture requires effective and safe biofertilizers and biofungicides with low environmental impact. Natural ecosystems that closely resemble the conditions of biosaline agriculture may present a reservoir for fungal strains that can be used as novel bioeffectors. METHODS AND RESULTS We isolated a library of fungi from the rhizosphere of three natural halotolerant plants grown in the emerging tidal salt marshes on the south-east coast of China. DNA barcoding of 116 isolates based on the rRNA ITS1 and 2 and other markers (tef1 or rpb2) revealed 38 fungal species, including plant pathogenic (41%), saprotrophic (24%) and mycoparasitic (28%) taxa. The mycoparasitic fungi were mainly species from the hypocrealean genus Trichoderma, including at least four novel phylotypes. Two of them, representing the taxa Trichoderma arenarium sp. nov. (described here) and T. asperelloides, showed antagonistic activity against five phytopathogenic fungi, and significant growth promotion on tomato seedlings under the conditions of saline agriculture. CONCLUSIONS Trichoderma spp. of salt marshes play the role of natural biological control in young soil ecosystems with a putatively premature microbiome. SIGNIFICANCE AND IMPACT OF THE STUDY The saline soil microbiome is a rich source of halotolerant bioeffectors that can be used in biosaline agriculture.
Collapse
Affiliation(s)
- M.‐Y. Ding
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - W. Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - X.‐C. Ma
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - B.‐W. Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - S.‐Q. Jiang
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - Y.‐N. Yu
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
| | - M.J. Rahimi
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| | - R.‐W. Gao
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - Z. Zhao
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
| | - F. Cai
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
- Jiangsu Provincial Key Lab of Solid Organic Waste UtilizationJiangsu Collaborative Innovation Center of Solid Organic WastesEducational Ministry Engineering Center of Resource‐Saving FertilizersNanjing Agricultural UniversityNanjingP.R. China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| | - I.S. Druzhinina
- Fungal Genomics Laboratory (FungiG)Nanjing Agricultural UniversityNanjingP.R. China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE)TU WienViennaAustria
| |
Collapse
|
11
|
MIST: a Multilocus Identification System for Trichoderma. Appl Environ Microbiol 2020; 86:AEM.01532-20. [PMID: 32680870 DOI: 10.1128/aem.01532-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Due to the rapid expansion in microbial taxonomy, precise identification of common industrially and agriculturally relevant fungi such as Trichoderma species is challenging. In this study, we introduce the online multilocus identification system (MIST) for automated detection of 349 Trichoderma species based on a set of three DNA barcodes. MIST is based on the reference databases of validated sequences of three commonly used phylogenetic markers collected from public databases. The databases consist of 414 complete sequences of the nuclear rRNA internal transcribed spacers (ITS) 1 and 2, 583 sequence fragments of the gene encoding translation elongation factor 1-alpha (tef1), and 534 sequence fragments of the gene encoding RNA polymerase subunit 2 (rpb2). Through MIST, information from different DNA barcodes can be combined and the identification of Trichoderma species can be achieved based on the integrated parametric sequence similarity search (blastn) performed in the manner of a decision tree classifier. In the verification process, MIST provided correct identification for 44 Trichoderma species based on DNA barcodes consisting of tef1 and rpb2 markers. Thus, MIST can be used to obtain an automated species identification as well as to retrieve sequences required for manual identification by means of phylogenetic analysis.IMPORTANCE The genus Trichoderma is important to humankind, with a wide range of applications in industry, agriculture, and bioremediation. Thus, quick and accurate identification of Trichoderma species is paramount, since it is usually the first step in Trichoderma-based research. However, it frequently becomes a limitation, especially for researchers who lack taxonomic knowledge of fungi. Moreover, as the number of Trichoderma-based studies has increased, a growing number of unidentified sequences have been stored in public databases, which has made the species identification more ambiguous. In this study, we provide an easy-to-use tool, MIST, for automated species identification, a list of Trichoderma species, and corresponding sequences of reference DNA barcodes. Therefore, this study will facilitate the research on the biodiversity and applications of the genus Trichoderma.
Collapse
|
12
|
Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 2020; 10:362. [PMID: 32821644 PMCID: PMC7392985 DOI: 10.1007/s13205-020-02301-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp., a cosmopolitan fungal genus, has remarkable economic value in industry and agriculture. The resources of Trichoderma spp. in the grassland and forest ecosystems of northern Xinjiang were explored in this study. A total of 634 soil samples was collected, and 312 strains assigned to 23 species of Trichoderma spp. were identified. T. harzianum was the dominant species with 28.2% from all isolates. The principal components analysis indicated that ecosystem was the most dominant impact factor among longitude, latitude, altitude and ecosystems for the species diversities of Trichoderma spp. with the decreasing trend from the north to the south of northern Xinjiang (e.g., from Altay, followed by Yili, Changji, Bayingolin and finally Urumqi). Overall, Trichoderma spp. were more frequently encountered in forest ecosystems (coniferous forest and coniferous and broadleaf mixed forest) than in grassland ecosystems (desert steppe and temperate steppe). Frequency of Trichoderma spp. was significantly decreased along with increased altitude and only a few strains were isolated from altitudes above 3000 m. The results provided essential information on Trichoderma occurrence and distribution, which should benefit the application of Trichoderma in agriculture.
Collapse
|
13
|
Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. SUSTAINABILITY 2020. [DOI: 10.3390/su12104327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms are regarded as a sustainable source of biologically active molecules. Among them, Trichoderma spp. have been an attractive source of biological compounds. However, the study of marine-derived Trichoderma has developed slowly because of the difficulty in isolating the fungi. In our study, 30 strains of marine-derived Trichoderma were identified through the translation elongation factor 1-alpha (EF1α) sequences, and their biological activities, such as antioxidant activity by ABTS and DPPH assays, antifungal activity against Asteromyces cruciatus and Lindra thalassiae, and tyrosinase inhibition activity, were investigated. As a result, the 30 marine Trichoderma species were classified into 21 taxa, including three new species candidates. Three strains of T. asperellum showed the highest ABTS radical scavenging activity and antifungal activity. T. bissettii SFC20170821-M05 and T. guizhouense SFC20180619-M23 showed notable DPPH radical scavenging activity and tyrosinase inhibition activity, respectively. This study showed the potential of marine-derived Trichoderma as a source of bioactive compounds.
Collapse
|
14
|
Zhang X, Wu J, Xu C, Lu N, Gao Y, Xue Y, Li Z, Xue C, Tang Q. Inactivation of microbes on fruit surfaces using photodynamic therapy and its influence on the postharvest shelf-life of fruits. FOOD SCI TECHNOL INT 2020; 26:696-705. [PMID: 32380848 DOI: 10.1177/1082013220921330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the disinfection effect of curcumin-mediated photodynamic therapy on the contact surfaces of fresh fruit was investigated. Our results showed that the optimum concentration of curcumin and the energy density required were 0.5 μM and 7.2 J/cm2, respectively. Photodynamic therapy showed an excellent disinfection rate for the fresh fruits with a reduction of more than 80% in the total bacteria and coliform counts. The photodynamic therapy inhibited species that belonged to the categories of gram-negative and facultative anaerobic bacteria, except for two species of the Trichoderma fungus. Importantly, photodynamic therapy prolonged the shelf-life of grapes for two days at room temperature. Therefore, photodynamic therapy should be commercialized as a high efficiency and non-thermal sterilization technology for use in the food industry.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Juan Wu
- Innovation Center for Marine Drug Screening and Evaluation, Marine Biomedical Research Institute of Qingdao, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, China
| | - Na Lu
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, PR China
| |
Collapse
|
15
|
Oh SY, Park MS, Cho HJ, Lim YW. Diversity and effect of Trichoderma isolated from the roots of Pinus densiflora within the fairy ring of pine mushroom (Tricholoma matsutake). PLoS One 2018; 13:e0205900. [PMID: 30403694 PMCID: PMC6221287 DOI: 10.1371/journal.pone.0205900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/03/2018] [Indexed: 02/03/2023] Open
Abstract
Pine mushroom (PM, Tricholoma matsutake) is an important ectomycorrhizal fungus in Asia primarily due to its value as a food delicacy. Recent studies have shown that fairy rings of PM have distinctive fungal communities, which suggests that other fungi influence the growth of PM. Trichoderma is a well-known saprotrophic fungus commonly found in pine roots within PM fairy rings; however, little is known about the diversity of Trichoderma associated with PM and how these species influence PM growth. This study focused on diversity of Trichoderma isolated from pine roots within PM fairy rings and how these species affect the growth of PM isolate. Based on tef1a phylogenetic analyses, nine Trichoderma species (261 isolates) were identified. Trichoderma songyi and T. spirale were the dominant species, and Trichoderma community varied geographically. Growth experiments indicated that metabolites from five Trichoderma species had a significant influence on the growth of PM isolates. Metabolites of two Trichoderma species increased PM growth, while those of three Trichoderma species suppressed the growth. Within the fairy rings, Trichoderma that had a positive or neutral effect comprised the majority of Trichoderma communities. The results of this study suggest that various Trichoderma species co-exist within PM fairy rings and that these species influence PM growth.
Collapse
Affiliation(s)
- Seung-Yoon Oh
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Hae Jin Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Castagnoli E, Marik T, Mikkola R, Kredics L, Andersson M, Salonen H, Kurnitski J. IndoorTrichodermastrains emitting peptaibols in guttation droplets. J Appl Microbiol 2018; 125:1408-1422. [DOI: 10.1111/jam.13920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
Affiliation(s)
- E. Castagnoli
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - T. Marik
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - R. Mikkola
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - L. Kredics
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - M.A. Andersson
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Food and Environmental Science; Helsinki University; Helsinki Finland
| | - H. Salonen
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - J. Kurnitski
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Civil Engineering and Architecture; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
17
|
du Plessis IL, Druzhinina IS, Atanasova L, Yarden O, Jacobs K. The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 2018; 110:559-583. [PMID: 29902390 DOI: 10.1080/00275514.2018.1463059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fourteen Trichoderma (Hypocreales) species were identified during a survey of the genus in South Africa. These include T. afroharzianum, T. asperelloides, T. asperellum, T. atrobrunneum, T. atroviride, T. camerunense, T. gamsii, T. hamatum, T. koningii, T. koningiopsis, T. saturnisporum, T. spirale, T. virens, and T. viride. Ten of these species were not known to occur in South Africa prior to this investigation. Five additional species were novel and are described here as T. beinartii, T. caeruleimontis, T. chetii, T. restrictum, and T. undulatum. These novel Trichoderma species display morphological traits that are typical of the genus. Based on molecular identification using calmodulin, endochitinase, nuc rDNA internal transcribed spacers (ITS1-5.8S-ITS2), RNA polymerase II subunit B, and translation elongation factor 1-α gene sequence data, T. beinartii, T. caeruleimontis, and T. chetii were found to belong to the Longibrachiatum clade, whereas T. restrictum is a member of the Hamatum clade. Trichoderma undulatum occupies a distinct lineage distantly related to other Trichoderma species. Strains of T. beinartii and T. chetii were isolated previously in Hawaii and Israel; however, T. caeruleimontis, T. restrictum, and T. undulatum are so far known only from South Africa.
Collapse
Affiliation(s)
- Ihan L du Plessis
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| | - Irina S Druzhinina
- b Microbiology Group, Research Area Biochemical Technology , Institute of Chemical and Biological Engineering , Technische Universität Wien, Gumpendorferstrasse 1a, A1060 , Vienna , Austria
| | - Lea Atanasova
- c Institute of Microbiology , University of Innsbruck , Technikerstraße 25, A-6020 , Innsbruck , Austria
| | - Oded Yarden
- d Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment , The Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Karin Jacobs
- a Department of Microbiology , University of Stellenbosch , Private Bag X1, Matieland, 7602 , South Africa
| |
Collapse
|
18
|
Mycobiota associated with insect galleries in walnut with thousand cankers disease reveals a potential natural enemy against Geosmithia morbida. Fungal Biol 2018; 122:241-253. [DOI: 10.1016/j.funbio.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
|
19
|
Chen K, Zhuang WY. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci Rep 2017; 7:9090. [PMID: 28831112 PMCID: PMC5567330 DOI: 10.1038/s41598-017-07807-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
The first large-scaled survey of soil-inhabiting Trichoderma is conducted in 23 provinces of China. Twenty-three new species belonging to the green-ascospored clades are discovered. Their phylogenetic positions are determined by sequence analyses of the combined partial sequences of translation elongation factor 1-alpha and the second largest RNA polymerase subunit encoding genes. Morphology and culture characteristics are observed, described and illustrated in detail. Distinctions between the new species and their close relatives are compared and discussed. They are named as: T. aggregatum, T. alpinum, T. bannaense, T. breve, T. brevicrassum, T. byssinum, T. chlamydosporicum, T. concentricum, T. ganodermatis, T. hainanense, T. hengshanicum, T. hirsutum, T. hunanense, T. ingratum, T. liberatum, T. linzhiense, T. longisporum, T. polypori, T. pseudodensum, T. simplex, T. solum, T. undatipile and T. zayuense.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae ( Diaporthales). Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 38:136-155. [PMID: 29151630 PMCID: PMC5645181 DOI: 10.3767/003158517x694768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023]
Abstract
Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis s.str., and therefore the new genus Juglanconis is described. Morphologically, the genus Juglanconis differs from Melanconis by light to dark brown conidia with irregular verrucae on the inner surface of the conidial wall, while in Melanconis s.str. they are smooth. Juglanconis forms a separate clade not affiliated with a described family of Diaporthales, and the family Juglanconidaceae is introduced to accommodate it. Data of macro- and microscopic morphology and phylogenetic multilocus analyses of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences revealed four distinct species of Juglanconis. Comparison of the markers revealed that tef1 introns are the best performing markers for species delimitation, followed by cal, ms204 and tub2. The ITS, which is the primary barcoding locus for fungi, is amongst the poorest performing markers analysed, due to the comparatively low number of informative characters. Melanconium juglandinum (= Melanconis carthusiana), M. oblongum (= Melanconis juglandis) and M. pterocaryae are formally combined into Juglanconis, and J. appendiculata is described as a new species. Melanconium juglandinum and Melanconis carthusiana are neotypified and M. oblongum and Diaporthe juglandis are lectotypified. A short description and illustrations of the holotype of Melanconium ershadii from Pterocarya fraxinifolia are given, but based on morphology it is not considered to belong to Juglanconis. A key to all treated species of Juglanconis is provided.
Collapse
|
21
|
Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL. Improving taxonomic accuracy for fungi in public sequence databases: applying 'one name one species' in well-defined genera with Trichoderma/Hypocrea as a test case. Database (Oxford) 2017; 2017:4553317. [PMID: 29220466 PMCID: PMC5641268 DOI: 10.1093/database/bax072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/18/2023]
Abstract
The ITS (nuclear ribosomal internal transcribed spacer) RefSeq database at the National Center for Biotechnology Information (NCBI) is dedicated to the clear association between name, specimen and sequence data. This database is focused on sequences obtained from type material stored in public collections. While the initial ITS sequence curation effort together with numerous fungal taxonomy experts attempted to cover as many orders as possible, we extended our latest focus to the family and genus ranks. We focused on Trichoderma for several reasons, mainly because the asexual and sexual synonyms were well documented, and a list of proposed names and type material were recently proposed and published. In this case study the recent taxonomic information was applied to do a complete taxonomic audit for the genus Trichoderma in the NCBI Taxonomy database. A name status report is available here: https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi. As a result, the ITS RefSeq Targeted Loci database at NCBI has been augmented with more sequences from type and verified material from Trichoderma species. Additionally, to aid in the cross referencing of data from single loci and genomes we have collected a list of quality records of the RPB2 gene obtained from type material in GenBank that could help validate future submissions. During the process of curation misidentified genomes were discovered, and sequence records from type material were found hidden under previous classifications. Source metadata curation, although more cumbersome, proved to be useful as confirmation of the type material designation. Database URL:http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353
Collapse
Affiliation(s)
- Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pooja K Strope
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priscila Chaverri
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, Costa Rica
| | - Romina Gazis
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Stacy Ciufo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Domrachev
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
|
23
|
Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci Rep 2016; 6:27074. [PMID: 27245694 PMCID: PMC4888246 DOI: 10.1038/srep27074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.
Collapse
|
24
|
A novel orellanine containing mushroom Cortinarius armillatus. Toxicon 2016; 114:65-74. [PMID: 26915341 DOI: 10.1016/j.toxicon.2016.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 11/20/2022]
Abstract
Orellanine (3,3',4,4'-tetrahydroxy-2,2'-bipyridine-1,1'-dioxide) is a tetrahydroxylated di-N-oxidized bipyridine compound. The toxin, present in certain species of Cortinarius mushrooms, is structurally similar to herbicides Paraquat and Diquat. Cortinarius orellanus and Cortinarius rubellus are the major orellanine-containing mushrooms. Cortinarius mushrooms are widely reported in Europe where they have caused human poisoning and deaths through accidental ingestion of the poisonous species mistaken for the edible ones. In North America, Cortinarius orellanosus mushroom poisoning was recently reported to cause renal failure in a Michigan patient. Cortinarius mushroom poisoning is characterized by delayed acute renal failure, with some cases progressing to end-stage kidney disease. There is debate whether other Cortinarius mushroom contain orellanine or not, especially in North America. Currently, there are no veterinary diagnostic laboratories in North America with established test methods for detection and quantitation of orellanine. We have developed two diagnostic test methods based on HPLC and LC-MSMS for identification and quantitation of orellanine in mushrooms. Using these methods, we have identified Cortinarius armillatus as a novel orellanine-containing mushroom in North America. The mean toxin concentration of 145 ug/g was <1% of that of the more toxic C. rubellus. The HPLC method can detect orellanine at 17 μg g(-1) while the LC-MSMS method is almost 2000 times more sensitive and can detect orellanine at 30 ng g(-1). Both tests are quantitative, selective and are now available for veterinary diagnostic applications.
Collapse
|
25
|
Cázares-García SV, Arredondo-Santoyo M, Vázquez-Marrufo G, Soledad Vázquez-Garcidueñas M, Robinson-Fuentes VA, Gómez-Reyes VM. Typing and selection of wild strains ofTrichodermaspp. producers of extracellular laccase. Biotechnol Prog 2016; 32:787-98. [DOI: 10.1002/btpr.2237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/25/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Saila Viridiana Cázares-García
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Marina Arredondo-Santoyo
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología; Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Ma. Soledad Vázquez-Garcidueñas
- Div. de Estudios de Posgrado; Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | - Virginia A. Robinson-Fuentes
- Div. de Estudios de Posgrado; Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo; Michoacán Mexico
| | | |
Collapse
|
26
|
Błaszczyk L, Strakowska J, Chełkowski J, Gąbka-Buszek A, Kaczmarek J. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. J Appl Genet 2015; 57:397-407. [PMID: 26586561 PMCID: PMC4963455 DOI: 10.1007/s13353-015-0326-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/23/2015] [Accepted: 11/02/2015] [Indexed: 10/29/2022]
Abstract
The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Judyta Strakowska
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Jerzy Chełkowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Agnieszka Gąbka-Buszek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Joanna Kaczmarek
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
27
|
Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, Secondary-Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of theTrichoderma harzianumComplex. Chem Biodivers 2015; 12:662-84. [DOI: 10.1002/cbdv.201400300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 11/05/2022]
|
28
|
Abstract
The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species.
Collapse
Affiliation(s)
- W.M. Jaklitsch
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
- Correspondence: W.M. Jaklitsch.
| | - H. Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Wien, Austria
- Department for Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF), University of Natural Resources and Life Sciences, Hasenauerstraße 38, A-1190 Wien, Austria
| |
Collapse
|
29
|
Trichoderma (Hypocrea) species with green ascospores from China. Persoonia - Molecular Phylogeny and Evolution of Fungi 2015; 34:113-29. [PMID: 26240449 PMCID: PMC4510275 DOI: 10.3767/003158515x686732] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/13/2014] [Indexed: 11/25/2022]
Abstract
Stromata of Trichoderma species having green ascospores were collected in various regions of China. Based on morphology of the sexual and asexual morph, culture characteristics, and sequence analyses of rpb2 and tef1 genes, 17 species with green ascospores were identified. Among them, Trichoderma rosulatum, T. rufobrunneum and T. stipitatum are described as new species, and seven other species are reported for the first time from China. Trichoderma rosulatum produces small bright yellow or pale greenish stromata with dense dark green ostioles and gliocladium-like conidiophores, shows a close relationship to T. thelephoricola, and belongs to the Chlorospora clade. Trichoderma rufobrunneum, which typically forms reddish brown stromata, is recognised as a member of the Harzianum clade. Trichoderma stipitatum is characterised by turbinate, pale yellow to nearly orange stromata and verticillium-like conidiophores; it forms a distinct, independent lineage with strong bootstrap support in the phylogenetic trees. The distinctions between the new species and their close relatives are discussed, and their phylogenetic positions are explored.
Collapse
|
30
|
Li Destri Nicosia MG, Mosca S, Mercurio R, Schena L. Dieback of Pinus nigra Seedlings Caused by a Strain of Trichoderma viride. PLANT DISEASE 2015; 99:44-49. [PMID: 30699733 DOI: 10.1094/pdis-04-14-0433-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four different fungi (Trichoderma viride, T. harzianum, Phomopsis sp., and Mortierella sp.) were isolated from 6-year-old Pinus nigra plants showing stunting and high incidence of mortality in a reforestation area of the National Park of Abruzzo, Lazio, and Molise (central Italy). Tests conducted on P. nigra revealed the pathogenic behavior of T. viride isolates with 30 to 80% mortality in artificially inoculated 2-year-old seedlings. The pathogenicity of these isolates was also observed in 10-year-old P. nigra trees and on lemon fruit. This result, in agreement with the constant isolation of T. viride from diseased plants, suggests the possible role of this fungus in the decline of P. nigra plants. T. harzianum and two reference isolates of T. viridarium and T. trixiae did not cause any symptoms, while Phomopsis sp. and Mortierella sp. caused limited necroses around the inoculation point in a few seedlings. Their role in the decline of P. nigra seedlings was considered irrelevant. According to phylogenetic analyses, pathogenic isolates of T. viride clustered in a very uniform group containing strains from different geographic origin and hosts, but none previously reported as a biocontrol agent.
Collapse
Affiliation(s)
- M G Li Destri Nicosia
- Dipartimento di Agraria, Università degli Studi Mediterranea, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - S Mosca
- Dipartimento di Agraria, Università degli Studi Mediterranea, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - R Mercurio
- Dipartimento di Agraria, Università degli Studi Mediterranea, Località Feo di Vito, 89122, Reggio Calabria, Italy
| | - L Schena
- Dipartimento di Agraria, Università degli Studi Mediterranea, Località Feo di Vito, 89122, Reggio Calabria, Italy
| |
Collapse
|
31
|
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. FUNGAL DIVERS 2014; 69:117-146. [PMID: 25722662 PMCID: PMC4338523 DOI: 10.1007/s13225-013-0276-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocrea that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from Trichoderma/Hypocrea. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic Trichoderma/Hypocrea species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (=72 %) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with 'classical representatives' of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.
Collapse
Affiliation(s)
- Christian R Röhrich
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany. Present Address: AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anita Iversen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark. Present Address: Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany; Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
32
|
Park MS, Oh SY, Cho HJ, Fong JJ, Cheon WJ, Lim YW. Trichoderma songyi sp. nov., a new species associated with the pine mushroom (Tricholoma matsutake). Antonie van Leeuwenhoek 2014; 106:593-603. [DOI: 10.1007/s10482-014-0230-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/02/2014] [Indexed: 10/24/2022]
|