1
|
van Ingen-Buijs VA, van Westerhoven AC, Skiadas P, Zuijdgeest XCL, Haridas S, Daum C, Duffy K, Guo J, Hundley H, LaButti K, Lipzen A, Pangilinan J, Riley R, Wang J, Yan M, Martin F, Barry K, Grigoriev IV, Groenewald JZ, Crous PW, Seidl MF. Phyllosticta paracitricarpa is synonymous with the EU quarantine fungus P. citricarpa based on phylogenomic analyses. Fungal Genet Biol 2024; 175:103925. [PMID: 39244012 DOI: 10.1016/j.fgb.2024.103925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Phyllosticta citricarpa is an important citrus-pathogen and a quarantine organism in the European Union. Its recently described relative, P. paracitricarpa, is very closely related and not listed as a quarantine organism. P. paracitricarpa is very difficult to distinguish from P. citricarpa, since its morphological features overlap and the barcoding gene sequences that were originally used to delimit them as distinct species have a low number of species-specific polymorphisms that have subsequently been shown to overlap between the two clades. Therefore, we performed extensive genomic analyses to determine whether the genetic variation between P. citricarpa and P. paracitricarpa strains should be considered to represent infraspecific variation within P. citricarpa, or whether it is indicative of distinct species. Using a phylogenomic analysis with 3,000 single copy ortholog genes and whole-genome comparisons, we determined that the variation between P. citricarpa and P. paracitricarpa can be considered as infraspecies variation within P. citricarpa. We also determined the level of variation in mitochondrial assemblies of several Phyllosticta species and concluded there are only minimal differences between the assemblies of P. citricarpa and P. paracitricarpa. Thus, using several orthogonal approaches, we here demonstrate that variation within the nuclear and mitochondrial genomes of other Phyllosticta species is larger than variation between genomes obtained from P. citricarpa and P. paracitricarpa strains. Thus, P. citricarpa and P. paracitricarpa should be considered as conspecific.
Collapse
Affiliation(s)
- Valerie A van Ingen-Buijs
- Evolutionary Phytopathology group, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, the Netherlands; Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Netherlands Institute for Vectors, Invasive plants and Plant Health (NIVIP), National Plant Protection Organization (NPPO), Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA, Wageningen, the Netherlands
| | - Anouk C van Westerhoven
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands; Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Petros Skiadas
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, the Netherlands
| | | | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecia Duffy
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Guo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jie Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mi Yan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Francis Martin
- Department of Biology, Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine "Interaction Arbres/Microorganismes", Champenoux F-54280, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA
| | - Johannes Z Groenewald
- Evolutionary Phytopathology group, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, the Netherlands
| | - Pedro W Crous
- Evolutionary Phytopathology group, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, the Netherlands; Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
2
|
Wu W, Li W, Liu F, Chen S. Evidence of High Genetic Diversity and Differences in the Population Diversity of the Eucalyptus Leaf Blight Pathogen Calonectria pseudoreteaudii from Diseased Leaves and Soil in a Plantation in Guangxi, China. Microorganisms 2023; 11:2785. [PMID: 38004796 PMCID: PMC10673236 DOI: 10.3390/microorganisms11112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Calonectria pseudoreteaudii is an important causal agent of Eucalyptus leaf blight in southern China. This pathogen causes Eucalyptus tree disease across numerous regions in southern China. In addition to diseased leaves, C. pseudoreteaudii has occasionally been isolated from soil in Eucalyptus plantations. The aim of this study was to clarify whether C. pseudoreteaudii causing Eucalyptus leaf blight in China is mainly clonally reproduced and to determine the potential spreading mechanism of C. pseudoreteaudii between diseased leaves and soil. To this end, 10 polymorphic microsatellite markers were analyzed to detect the genetic diversity of 97 C. pseudoreteaudii isolates from diseased leaves and soil in a Eucalyptus plantation in Guangxi Zhuang Autonomous Region, southern China. The analysis showed that the genetic diversity of the isolates from both the diseased leaves and soil was high. However, the gene and genotype diversity of the C. pseudoreteaudii isolates from diseased leaves were higher than those of the isolates from the soil. Moreover, all genotypes detected in the isolates from the soil were also found in the isolates from the diseased leaves. Structural analyses did not show clear population structures related to the population substrates of the diseased leaves or soil, and molecular variance analyses indicated that no significant genetic differentiation existed between the diseased leaf and soil populations. These results suggest that C. pseudoreteaudii in soil spreads from diseased leaves, and that an asexual cycle is the primary reproductive mode in both diseased leaf and soil populations. This is the first study on the genetic diversity and population structure of C. pseudoreteaudii. The high genetic diversity and spread pathways of this pathogen may pose challenges in controlling the disease. C. pseudoreteaudii from both diseased leaves and soils in Eucalyptus plantations needs to be carefully monitored for disease control and management.
Collapse
Affiliation(s)
- Wenxia Wu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
- College of Forestry, Nanjing Forestry University (NJFU), Nanjing 210037, China
| | - Wenwen Li
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| | - Feifei Liu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| | - Shuaifei Chen
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China; (W.W.); (W.L.); (F.L.)
| |
Collapse
|
3
|
van der Merwe NA, Phakalatsane T, Wilken PM. The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa. Genes (Basel) 2023; 14:1158. [PMID: 37372338 DOI: 10.3390/genes14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems.
Collapse
Affiliation(s)
- Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Tshiamo Phakalatsane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Wilson AM, Wingfield MJ, Wingfield BD. Structure and number of mating pheromone genes is closely linked to sexual reproductive strategy in Huntiella. BMC Genomics 2023; 24:261. [PMID: 37179314 PMCID: PMC10182648 DOI: 10.1186/s12864-023-09355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature α-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly.
Collapse
Affiliation(s)
- Andi M Wilson
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
5
|
Li W, Chen S, Wingfield MJ, Duong TA. Calonectria queenslandica: Causal Agent of Eucalyptus Leaf Blight in Southern China. PLANT DISEASE 2023; 107:730-742. [PMID: 35906776 DOI: 10.1094/pdis-01-22-0196-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Calonectria leaf blight caused by Calonectria spp. is among the most serious diseases affecting the health and sustainability of Eucalyptus plantations in southern China. Recent outbreaks of this disease in GuangDong Province prompted a need to identify the species involved. Typical symptoms of Calonectria leaf blight were observed on 2-year-old Eucalyptus urophylla × E. grandis trees in a plantation in the ZhaoQing region. In total, 38 Calonectria isolates were collected from 32 diseased trees. All isolates were identified using DNA sequence analyses of the translation elongation factor 1-α (tef1), β-tubulin (tub2), calmodulin (cmdA), and histone H3 (his3) gene regions. Phylogenetic analyses revealed that Calonectria queenslandica was the dominant species, accounting for 81.6% of the isolates collected. Other species isolated included C. pseudoreteaudii (10.5%), C. reteaudii (5.3%), and C. aconidialis (2.6%). This is the first report of C. queenslandica in China and all isolates had identical sequences in all four gene regions. PCR amplification using primers targeting the MAT1-1-1 and MAT1-2-1 genes in all C. queenslandica isolates revealed that only the MAT1-2 idiomorph was present. The results suggest that C. queenslandica was introduced into the sampled area with very limited genetic diversity. Pathogenicity tests were conducted on two Eucalyptus genotypes widely planted in the GuangDong Province using isolates representing all species collected. The results showed that these species could all cause disease but the predominance of C. queenslandica on infected trees suggests that it is the major driver of the disease problem studied. Different Eucalyptus genotypes used in the pathogenicity tests differed in susceptibility to infection by the Calonectria spp. tested, providing opportunities to avoid leaf blight by deploying disease-tolerant planting stock.
Collapse
Affiliation(s)
- WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
- Research Institute of Fast-growing Trees (RIFT)/China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
| | - ShuaiFei Chen
- Research Institute of Fast-growing Trees (RIFT)/China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang 524022, GuangDong Province, China
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Sanchez-Gonzalez EI, Soares TDPF, Zarpelon TG, Zauza EAV, Mafia RG, Ferreira MA. Two new species of Calonectria (Hypocreales, Nectriaceae) causing Eucalyptus leaf blight in Brazil. MycoKeys 2022; 91:169-197. [PMID: 36760892 PMCID: PMC9849068 DOI: 10.3897/mycokeys.91.84896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022] Open
Abstract
In recent decades, commercial Eucalyptus plantations have expanded toward the warm and humid regions of northern and northeastern Brazil, where Calonectria leaf blight (CLB) has become the primary fungal leaf disease of this crop. CLB can be caused by different Calonectria species, and previous studies have indicated that Calonectria might have high species diversity in Brazil. During a disease survey conducted in three commercial plantations of Eucalyptus in northeastern Brazil, diseased leaves from Eucalyptus trees with typical symptoms of CLB were collected, and Calonectria fungi were isolated. Based on phylogenetic analyses of six gene regions (act, cmdA, his3, rpb2, tef1, and tub2) and morphological characteristics, two new species of Calonectria were identified. Five isolates were named as C.paragominensis sp. nov. and four were named as C.imperata sp. nov. The pathogenicity to Eucalyptus of both species was confirmed by fulfilling the Koch's postulates.
Collapse
Affiliation(s)
- Enrique I. Sanchez-Gonzalez
- Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, 37200-900, BrasilUniversidade Federal de LavrasLavrasBrazil
| | - Thaissa de Paula Farias Soares
- Suzano Papel e Celulose S. A. Centro de Tecnologia, Aracruz, ES, 29197-900, BrasilSuzano Papel e Celulose S. A. Centro de TecnologiaAracruzBrazil
| | - Talyta Galafassi Zarpelon
- Suzano Papel e Celulose S. A. Centro de Tecnologia, Aracruz, ES, 29197-900, BrasilSuzano Papel e Celulose S. A. Centro de TecnologiaAracruzBrazil
| | - Edival Angelo Valverde Zauza
- Suzano Papel e Celulose S. A. Centro de Tecnologia, Aracruz, ES, 29197-900, BrasilSuzano Papel e Celulose S. A. Centro de TecnologiaAracruzBrazil
| | - Reginaldo Gonçalves Mafia
- Suzano Papel e Celulose S. A. Centro de Tecnologia, Aracruz, ES, 29197-900, BrasilSuzano Papel e Celulose S. A. Centro de TecnologiaAracruzBrazil
| | - Maria Alves Ferreira
- Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, 37200-900, BrasilUniversidade Federal de LavrasLavrasBrazil
| |
Collapse
|
7
|
Chai H, Liu P, Ma Y, Chen W, Tao N, Zhao Y. Organization and Unconventional Integration of the Mating-Type Loci in Morchella Species. J Fungi (Basel) 2022; 8:jof8070746. [PMID: 35887501 PMCID: PMC9318749 DOI: 10.3390/jof8070746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
True morels (Morchella spp.) are a group of delicious fungi in high demand worldwide, and some species of morels have been successfully cultivated in recent years. To better understand the sexual reproductive mechanisms of these fungi, we characterized the structure of the mating-type loci from ten morel species, and seven of them were obtained using long-range PCR amplification. Among the studied species, eight were heterothallic, two were homothallic, and four types of composition were observed in the MAT loci. In three of the five black morel species, the MAT1-1-1, MAT1-1-10, and MAT1-1-11 genes were in the MAT1-1 idiomorph, and only the MAT1-2-1 gene was in the MAT1-2 idiomorph, while an integration event occurred in the other two species and resulted in the importation of the MAT1-1-11 gene into the MAT1-2 idiomorph and survival as a truncated fragment in the MAT1-1 idiomorph. However, the MAT1-1-11 gene was not available in the four yellow morels and one blushing morel species. M. rufobrunnea, a representative species of the earliest diverging branch of true morels, along with another yellow morel Mes-15, were confirmed to be homothallic, and the MAT1-1-1, MAT1-1-10, and MAT1-2-1 genes were arranged in a tandem array. Therefore, we hypothesized that homothallism should be the ancestral reproductive state in Morchella. RT-PCR analyses revealed that four mating genes could be constitutively expressed, while the MAT1-1-10 gene underwent alternative splicing to produce different splice variants.
Collapse
Affiliation(s)
- Hongmei Chai
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| | - Ping Liu
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| | - Nan Tao
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.C.); (P.L.); (Y.M.); (W.C.); (N.T.)
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming 650205, China
- Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
- Correspondence: ; Tel.: +86-871-6514-0446
| |
Collapse
|
8
|
Li J, Wingfield MJ, Barnes I, Chen S. Calonectria in the age of genes and genomes: Towards understanding an important but relatively unknown group of pathogens. MOLECULAR PLANT PATHOLOGY 2022; 23:1060-1072. [PMID: 35338559 PMCID: PMC9190971 DOI: 10.1111/mpp.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The genus Calonectria includes many aggressive plant pathogens causing diseases on various agricultural crops as well as forestry and ornamental tree species. Some species have been accidentally introduced into new environments via international trade of putatively asymptomatic plant germplasm or contaminated soil, resulting in significant economic losses. This review provides an overview of the taxonomy, population biology, and pathology of Calonectria species, specifically emerging from contemporary studies that have relied on DNA-based technologies. The growing importance of genomics in future research is highlighted. A life cycle is proposed for Calonectria species, aimed at improving our ability to manage diseases caused by these pathogens.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - ShuaiFei Chen
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
- Research Institute of Fast‐growing Trees/China Eucalypt Research Centre, Chinese Academy of ForestryZhanjiangChina
| |
Collapse
|
9
|
Aylward J, Havenga M, Wingfield BD, Wingfield MJ, Dreyer LL, Roets F, Steenkamp ET. Novel mating-type-associated genes and gene fragments in the genomes of Mycosphaerellaceae and Teratosphaeriaceae fungi. Mol Phylogenet Evol 2022; 171:107456. [DOI: 10.1016/j.ympev.2022.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
|
10
|
Wilson AM, Wilken PM, Wingfield MJ, Wingfield BD. Genetic Networks That Govern Sexual Reproduction in the Pezizomycotina. Microbiol Mol Biol Rev 2021; 85:e0002021. [PMID: 34585983 PMCID: PMC8485983 DOI: 10.1128/mmbr.00020-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Andi M. Wilson
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - P. Markus Wilken
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Brenda D. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
11
|
Nagel JH, Wingfield MJ, Slippers B. Next-generation sequencing provides important insights into the biology and evolution of the Botryosphaeriaceae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Kobmoo N, Arnamnart N, Pootakham W, Sonthirod C, Khonsanit A, Kuephadungphan W, Suntivich R, Mosunova O, Giraud T, Luangsa-ard J. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. PERSOONIA 2021; 47:136-150. [PMID: 37693793 PMCID: PMC10486633 DOI: 10.3767/persoonia.2021.47.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Fungi are rich in complexes of cryptic species that need a combination of different approaches to be delimited, including genomic information. Beauveria (Cordycipitaceae, Hypocreales) is a well-known genus of entomopathogenic fungi, used as a biocontrol agent. In this study we present a polyphasic taxonomy regarding two widely distributed complexes of Beauveria: B. asiatica and B. bassiana s.lat. Some of the genetic groups as previously detected within both taxa were either confirmed or fused using population genomics. High levels of divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their subdivision as distinct species. Morphological examination focusing on the width and the length of phialides and conidia showed no difference among the clades within B. bassiana while conidial length was significantly different among clades within B. asiatica. The secondary metabolite profiles obtained by liquid chromatography-mass spectrometry (LC-MS) allowed a distinction between B. asiatica and B. bassiana, but not between the clades therein. Based on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana spp. nov. Such closely related but divergent species with different host ranges have potential to elucidate the evolution of host specificity, with potential biocontrol application. Citation: Kobmoo N, Arnamnart N, Pootakham W, et al. 2021. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia 47: 136-150. https://doi.org/10.3767/persoonia.2021.47.04.
Collapse
Affiliation(s)
- N. Kobmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - N. Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - C. Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - A. Khonsanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Kuephadungphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - R. Suntivich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - O.V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Giraud
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - J.J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
13
|
Kobmoo N, Arnamnart N, Pootakham W, Sonthirod C, Khonsanit A, Kuephadungphan W, Suntivich R, Mosunova O, Giraud T, Luangsa-ard J. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. PERSOONIA 2021; 47:136-150. [PMID: 38352976 PMCID: PMC10784665 DOI: 10.3767/persoonia.2023.47.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/12/2021] [Indexed: 02/16/2024]
Abstract
Fungi are rich in complexes of cryptic species that need a combination of different approaches to be delimited, including genomic information. Beauveria (Cordycipitaceae, Hypocreales) is a well-known genus of entomopathogenic fungi, used as a biocontrol agent. In this study we present a polyphasic taxonomy regarding two widely distributed complexes of Beauveria: B. asiatica and B. bassiana s.lat. Some of the genetic groups as previously detected within both taxa were either confirmed or fused using population genomics. High levels of divergence were found between two clades in B. asiatica and among three clades in B. bassiana, supporting their subdivision as distinct species. Morphological examination focusing on the width and the length of phialides and conidia showed no difference among the clades within B. bassiana while conidial length was significantly different among clades within B. asiatica. The secondary metabolite profiles obtained by liquid chromatography-mass spectrometry (LC-MS) allowed a distinction between B. asiatica and B. bassiana, but not between the clades therein. Based on these genomic, morphological, chemical data, we proposed a clade of B. asiatica as a new species, named B. thailandica, and two clades of B. bassiana to respectively represent B. namnaoensis and B. neobassiana spp. nov. Such closely related but divergent species with different host ranges have potential to elucidate the evolution of host specificity, with potential biocontrol application. Citation: Kobmoo N, Arnamnart N, Pootakham W, et al. 2021. The integrative taxonomy of Beauveria asiatica and B. bassiana species complexes with whole-genome sequencing, morphometric and chemical analyses. Persoonia 47: 136-150. https://doi.org/10.3767/persoonia.2021.47.04.
Collapse
Affiliation(s)
- N. Kobmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - N. Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - C. Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - A. Khonsanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - W. Kuephadungphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - R. Suntivich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - O.V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T. Giraud
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - J.J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
14
|
Li J, Barnes I, Liu F, Wingfield MJ, Chen S. Global Genetic Diversity and Mating Type Distribution of Calonectria pauciramosa: An Important Wide-Host-Range Plant Pathogen. PLANT DISEASE 2021; 105:1648-1656. [PMID: 33200973 DOI: 10.1094/pdis-05-20-1050-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal pathogen, Calonectria pauciramosa, has caused serious diseases of many important plants worldwide. Understanding the genetic diversity and mating type distribution of this pathogen provides an essential step toward the development of disease control measures. In this study, we designed 15 polymorphic microsatellite markers by using genome sequences of two Ca. pauciramosa isolates having opposite mating type and from different countries. These markers were used to determine the genetic diversity of 145 isolates representing 13 different hosts (12 plant hosts residing in 12 genera, and soil) from 10 countries. In addition, mating type genes were amplified to investigate the reproduction mode of the pathogens in these populations by using mating type primers designed for Calonectria spp. Results revealed that a single dominant genotype, isolated from 11 plant genera residing in eight families, was present in seven countries across five continents. Only mating type MAT1-1 or MAT1-2 was amplified in each of the isolates, confirming that Ca. pauciramosa is heterothallic. Both mating types were detected in isolates from Eucalyptus in South Africa and Uruguay. The MAT1-2 phenotype was widely distributed in isolates from 12 different hosts (11 plant hosts and soil) collected in 10 countries. Overall, the results suggest that there has been substantial global movement of Ca. pauciramosa and that this has shaped its current population structure.
Collapse
Affiliation(s)
- JieQiong Li
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - FeiFei Liu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China
| |
Collapse
|
15
|
Wu W, Chen S. Species Diversity, Mating Strategy and Pathogenicity of Calonectria Species from Diseased Leaves and Soils in the Eucalyptus Plantation in Southern China. J Fungi (Basel) 2021; 7:73. [PMID: 33498546 PMCID: PMC7909555 DOI: 10.3390/jof7020073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Many Calonectria species are causal agents of diseases on several forestry, agricultural and horticultural crops. Calonectria leaf blight is one of the most important diseases associated with Eucalyptus plantations and nurseries in Asia and South America. Recently, symptoms of leaf rot and leaf blight caused by Calonectria species were observed in a one-year-old Eucalyptus experimental plantation in GuangXi Province, southern China. To better understand the species diversity, mating strategy and pathogenicity of Calonectria species isolated from diseased tissues and soils, diseased leaves and soils under the trees from ten Eucalyptus urophylla hybrid genotypes were collected. Three hundred and sixty-eight Calonectria isolates were obtained from diseased Eucalyptus leaves and soils under these trees, and 245 representative isolates were selected based on the sampling substrates and Eucalyptus genotypes and identified by DNA sequence analyses based on the translation elongation factor 1-alpha (tef1), β-tubulin (tub2), calmodulin (cmdA) and histone H3 (his3) gene regions, as well as a combination of morphological characteristics. These isolates were identified as Calonectria hongkongensis (50.2%), C. pseudoreteaudii (47.4%), C. aconidialis (1.6%), C. reteaudii (0.4%) and C. auriculiformis (0.4%). This is the first report of C. reteaudii and C. auriculiformis occurrence in China. Calonectria pseudoreteaudii was isolated from both Eucalyptus diseased leaves and soils; the other four species were only obtained from soils. MAT1-1-1 and MAT1-2-1 gene amplification and mating type assignment results showed that C. pseudoreteaudii is heterothallic and an asexual cycle represents the primary reproductive mode, C. reteaudii and C. auriculiformis are likely to be heterothallic and C. hongkongensis and C. aconidialis are homothallic. Based on the genetic diversity comparisons for C. pseudoreteaudii isolates from diseased leaves and soils, we hypothesize that C. pseudoreteaudii in soils was spread from diseased leaves. Both the mycelia plug and conidia suspension inoculations indicated that all five Calonectria species were pathogenic to the two Eucalyptus genotypes tested and the tolerance of the two genotypes differed. It is necessary to understand the ecological niche and epidemiological characteristics of these Calonectria species and to select disease resistant Eucalyptus genotypes in southern China in the future.
Collapse
Affiliation(s)
- WenXia Wu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China;
- Nanjing Forestry University (NJFU), Nanjing 210037, China
| | - ShuaiFei Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China;
| |
Collapse
|
16
|
Krämer D, Lane FA, Steenkamp ET, Wingfield BD, Wilken PM. Unidirectional mating-type switching confers self-fertility to Thielaviopsis cerberus, the only homothallic species in the genus. Fungal Biol 2021; 125:427-434. [PMID: 34024590 DOI: 10.1016/j.funbio.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
Sexual reproduction is ubiquitous in nature, and nowhere is this more so than in the fungi. Heterothallic behaviour is observed when there is a strict requirement of contact between two individuals of opposite mating type for sexual reproduction to occur. In contrast, a homothallic species can complete the entire sexual cycle in isolation, although several genetic mechanisms underpin this self-fertility. These can be inferred by characterising the structure and gene-content of the mating-type locus, which contains genes that are involved in the regulation of sexual reproduction. In this study, the genetic basis of homothallism in Thielaviopsis cerberus was investigated, the only known self-fertile species within this genus. Using genome sequencing and conventional molecular techniques, two versions of the mating-type locus were identified in this species. This is typical of species that have a unidirectional mating-type switching reproductive strategy. The first version was a self-fertile locus that contained four known mating-type genes, while the second was a self-sterile version with a single mating-type gene. The conversion from a self-fertile to a self-sterile locus is likely mediated by a homologous recombination event at two direct repeats present in the self-fertile locus, resulting in the deletion of three mating-type genes and one of the repeats. Both locus versions were present in isolates that were self-fertile, while self-sterility was caused by the presence of only a switched locus. This study provides a clear example of the architectural fluidity in the mating-type loci that is common among even closely related fungal species.
Collapse
Affiliation(s)
- Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa. http://
| |
Collapse
|
17
|
Liu QL, Li JQ, Wingfield MJ, Duong TA, Wingfield BD, Crous PW, Chen SF. Reconsideration of species boundaries and proposed DNA barcodes for Calonectria. Stud Mycol 2020; 97:100106. [PMID: 34322181 PMCID: PMC8295567 DOI: 10.1016/j.simyco.2020.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calonectria represents a genus of phytopathogenic ascomycetous fungi with a worldwide distribution. In recent years, there has been an increase in the number of taxonomic studies on these fungi. Currently, there are 169 described species of Calonectria based on comparisons of DNA sequence data, combined with morphological characteristics. However, for some of these species, the sequence data utilised at the time of their description were relatively limited. This has justified an urgent need to reconsider the species boundaries for Calonectria based on robust genus-wide phylogenetic analyses. In this study, we utilised 240 available isolates including the ex-types of 128 Calonectria species, and re-sequenced eight gene regions (act, cmdA, his3, ITS, LSU, rpb2, tef1 and tub2) for them. Sequences for 44 Calonectria species, for which cultures could not be obtained, were downloaded from GenBank. DNA sequence data of all the 169 Calonectria species were then used to determine their phylogenetic relationships. As a consequence, 51 species were reduced to synonymy, two new species were identified, and the name Ca. lauri was validated. This resulted in the acceptance of 120 clearly defined Calonectria spp. The overall data revealed that the genus includes 11 species complexes, distributed across the Prolate and Sphaero-Naviculate Groups known to divide Calonectria. The results also made it possible to develop a robust set of DNA barcodes for Calonectria spp. To accomplish this goal, we evaluated the outcomes of each of the eight candidate DNA barcodes for the genus, as well as for each of the 11 species complexes. No single gene region provided a clear identity for all Calonectria species. Sequences of the tef1 and tub2 genes were the most reliable markers; those for the cmdA, his3, rpb2 and act gene regions also provided a relatively effective resolution for Calonectria spp., while the ITS and LSU failed to produce useful barcodes for species discrimination. At the species complex level, results showed that the most informative barcodes were inconsistent, but that a combination of six candidate barcodes (tef1, tub2, cmdA, his3, rpb2 and act) provided stable and reliable resolution for all 11 species complexes. A six-gene combined phylogeny resolved all 120 Calonectria species, and revealed that tef1, tub2, cmdA, his3, rpb2 and act gene regions are effective DNA barcodes for Calonectria.
Collapse
Affiliation(s)
- Q L Liu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - J Q Li
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China.,Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - P W Crous
- Department of Biochemistry, Genetics and Microbiology (BGM), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT Utrecht, the Netherlands
| | - S F Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China.,State Key Laboratory of Tree Genetics and Breeding (SKLTGB), Chinese Academy of Forestry (CAF), Haidian District, 100091, Beijing, China
| |
Collapse
|
18
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|