1
|
Aikoye S, Basiru TO, Nwoye I, Adereti I, Asuquo S, Ezeokoli A, Hardy J, Umudi O. A Systematic Review of Abuse or Overprescription of Bupropion in American Prisons and a Synthesis of Case Reports on Bupropion Abuse in American Prison and Non-prison Systems. Cureus 2023; 15:e36189. [PMID: 37065297 PMCID: PMC10104426 DOI: 10.7759/cureus.36189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Illicit drug use is a huge problem in the US prison system. The objectives of this study are (1) to systematically investigate the prevalence of bupropion abuse in American prisons along with associated problems, and (2) to synthesize available case reports on this topic in both prison and non-prison settings. Using the Preferred Reporting Items for Systematic Reviews and Meta-analyses, we searched five databases (PubMed, Embase, Scopus, CINAHL, and PsycINFO) and used Covidence software for screening and reviewing identified articles. The final search date was February 21, 2023. Newcastle-Ottawa Scale and ROBINS-I tool were used for risk of bias assessment. We included original studies of populations aged 18 years and above in American prisons. We found 77 unique articles, none of which met our eligibility criteria. A synthesis of 22 case reports that we found showed bupropion abuse to be more common in young males, and intranasal administration was the most common method of abuse. More frequent desired and adverse effects were "cocaine-like highs" and seizures, respectively. Although several cases of bupropion abuse have been reported in US prisons, no study has been done to understand its prevalence and associated effects. The absence of original studies on bupropion abuse in US prisons and the observed patterns in this case report synthesis further highlight the need for a study to investigate the prevalence of bupropion abuse in US prisons. The limitations of this study include that it is an empty systematic review and the absence of all pertinent data in many of the included case reports. The authors did not receive any funding for this work. This systematic review was registered in PROSPERO with registration number CRD42021227561.
Collapse
Affiliation(s)
- Salisu Aikoye
- Psychiatry, Charles R. Drew University of Medicine and Science, Los Angeles, USA
| | | | - Idorenyin Nwoye
- Pulmonary Medicine, IQVIA Global Solutions, Los Angeles, USA
| | - Iyanujesu Adereti
- Psychiatry, CIT Center of Excellence Clinical Research, Riverside, USA
| | - Sarah Asuquo
- Psychiatry, University of North Carolina, Chapel Hill, USA
| | - Adaobi Ezeokoli
- Psychiatry, Gateway Behavioral Health Services, Savanna, USA
| | - Jessie Hardy
- Psychiatry, Elmhurst Hospital Center, Queens, USA
| | | |
Collapse
|
2
|
Marusich JA, Gay EA, Watson SL, Blough BE. Alpha-pyrrolidinopentiophenone and mephedrone self-administration produce differential neurochemical changes following short- or long-access conditions in rats. Eur J Pharmacol 2021; 897:173935. [PMID: 33577836 PMCID: PMC7965342 DOI: 10.1016/j.ejphar.2021.173935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Stimulant-induced neurochemical changes may occur at different times for different brain regions or neurotransmitter systems. This study sought to examine the behavioral and neurochemical effects of extended access to α-pyrrolidinopentiophenone (α-PVP) and 4-methylmethcathinone (4MMC). Male and female Sprague-Dawley rats were trained to self-administer α-PVP (0.1 mg/kg/infusion) or 4MMC (0.5 mg/kg/infusion) through autoshaping, and then self-administered for 21 days during 1 h (short access; ShA) or 6 h (long access; LgA) sessions. Separate rats were assigned to a naïve control group. Amygdala, hippocampus, hypothalamus, prefrontal cortex (PFC), striatum, and thalamus were extracted, and tissue was analyzed with electrochemical detection and liquid chromatography mass spectrometry. Rats acquired self-administration of α-PVP and 4MMC, and LgA rats showed more escalation of self-administration than ShA rats. Synthetic cathinone administration produced several effects on neurotransmitters. LgA self-administration of α-PVP increased 5-HIAA levels in all brain regions, compared to control. In contrast, both LgA and ShA 4MMC self-administration decreased 5-HT and 5-HIAA levels in most brain regions. LgA exposure to both synthetic cathinones increased DOPAC levels in hypothalamus and striatum, and increased HVA levels in striatum compared to control. LgA self-administration of either synthetic cathinone produced region-specific increases in NE levels, whereas ShA self-administration lowered NE levels in select locations compared to control. These alterations in neurotransmitter levels indicate that synthetic cathinone use may produce differential neurochemical changes during the transition from use to abuse, and that 21 days of self-administration only models the beginning stages of dysregulated drug intake.
Collapse
Affiliation(s)
- Julie A Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA.
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| | - Scott L Watson
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Saber I, Milewski A, Reitz AB, Rawls SM, Walker EA. Effects of dopaminergic and serotonergic compounds in rats trained to discriminate a high and a low training dose of the synthetic cathinone mephedrone. Psychopharmacology (Berl) 2019; 236:1015-1029. [PMID: 30980094 PMCID: PMC6589396 DOI: 10.1007/s00213-019-05241-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/24/2019] [Indexed: 12/29/2022]
Abstract
RATIONALE The underlying pharmacological mechanisms of mephedrone, especially as related to interactions with different neurotransmitter systems, are a critical area of study as mephedrone continues to be abused. OBJECTIVE Direct-acting 5-HT2A/2C receptor agonists and antagonists and D1-3 receptor antagonists were examined in two groups of rats trained to discriminate mephedrone. A high dose of mephedrone was trained to extend previous results with traditional monoamine transporter inhibitors and substrate releasers. A very low dose of mephedrone was trained to preferentially capture serotonergic activity and to minimize the influence of rate-decreasing effects on substitution patterns. Selective 5-HT2A/2C and D1-3 receptor antagonists were examined in both groups. METHODS Male Sprague-Dawley rats were trained to discriminate either a low dose of 0.5 mg/kg mephedrone (N = 24) or a high dose of 3.2 mg/kg mephedrone (N = 11) from saline. RESULTS In the low training-dose group, mephedrone, MDMA, methamphetamine, d-amphetamine, cocaine, and enantiomers of mephedrone substituted for mephedrone; mCPP partially substituted overall for mephedrone; and DOI, WAY163909, and morphine failed to substitute for mephedrone. In the high training-dose group, only mephedrone and MDMA substituted for mephedrone. Sulpiride produced a small antagonism of the low training dose of mephedrone while SCH23390, SB242084, and ketanserin altered response rates. CONCLUSIONS A lower training dose of mephedrone produces a discriminative stimulus fully mimicked by MDMA, methamphetamine, cocaine, and d-amphetamine, whereas a higher training dose of mephedrone requires a discriminative stimulus that was only mimicked by MDMA. Dopaminergic or serotoninergic antagonists failed to produce significant blockade of mephedrone at either training dose.
Collapse
Affiliation(s)
- Iman Saber
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew Milewski
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Scott M. Rawls
- Center for Substance Abuse Research, and Temple University, Philadelphia, Pennsylvania, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ellen A. Walker
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, USA,Center for Substance Abuse Research, and Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Butelman ER, Kreek MJ. Discriminative Stimulus Properties of Opioid Ligands: Progress and Future Directions. Curr Top Behav Neurosci 2018; 39:175-192. [PMID: 27225498 DOI: 10.1007/7854_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Opioid receptors (MOP-r, KOP-r, DOP-r, as well as NOP-r) and their endogenous neuropeptide agonist systems are involved in diverse neurobiological and behavioral functions, in health and disease. These functions include pain and analgesia, addictions, and psychiatric diseases (e.g., depression-, anxiety-like, and stress-related disorders). Drug discrimination assays have been used to characterize the behavioral pharmacology of ligands with affinity at MOP-r, KOP-r, or DOP-r (and to a lesser extent NOP-r). Therefore, drug discrimination studies with opioid ligands have an important continuing role in translational investigations of diseases that are affected by these neurobiological targets and their pharmacotherapy.
Collapse
Affiliation(s)
- Eduardo R Butelman
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA.
| | - Mary Jeanne Kreek
- Laboratory on the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY, 10065, USA
| |
Collapse
|
5
|
Preclinical Models for Assessment of Antidepressant Abuse Potential. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Gunter BW, Jones SA, Paul IA, Platt DM, Rowlett JK. Benzodiazepine and neuroactive steroid combinations in rats: anxiolytic-like and discriminative stimulus effects. Psychopharmacology (Berl) 2016; 233:3237-47. [PMID: 27356519 PMCID: PMC6334648 DOI: 10.1007/s00213-016-4369-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Benzodiazepines are effective anxiolytics, hypnotics, and anticonvulsants but unwanted side effects, including abuse potential, limit their use. A possible strategy to increase the therapeutic index of this drug class is to combine benzodiazepines with neuroactive steroids. OBJECTIVES The present study evaluated the extent to which combinations of benzodiazepines (triazolam, clonazepam) and neuroactive steroids (pregnanolone, ganaxolone) induced additive, supra-additive, or infra-additive effects in an elevated zero maze and a drug discrimination procedure in rats. METHODS Male Sprague-Dawley rats (N = 7/group) were placed into an elevated zero maze apparatus following injections of multiple doses of triazolam and pregnanolone, alone and combined, or clonazepam and ganaxolone, alone and combined. These drugs/drug combinations also were evaluated in rats (N = 8) trained to discriminate triazolam (0.1 mg/kg, i.p.) from vehicle. Drug interactions were evaluated using isobolographic and dose-addition analysis. RESULTS In the elevated zero maze, all drugs engendered dose-dependent increases in time spent in the open quadrant when administered alone. Triazolam and pregnanolone, as well as clonazepam and ganaxolone combinations produced additive or supra-additive effects depending on the fixed-proportion that was tested. In triazolam discrimination, all drugs engendered dose-dependent increases in triazolam-lever responding. In combination, triazolam and pregnanolone and clonazepam and ganaxolone produced predominantly additive discriminative stimulus effects, except for one fixed proportion of clonazepam and ganaxolone which had supra-additive effects. CONCLUSIONS Although drug interactions depended on the constituent drugs, the combination tested, and the behavioral endpoint; a combination was identified that would be predicted to result in supra-additive anxiolytic-like effects with predominantly additive discriminative stimulus effects.
Collapse
Affiliation(s)
- Barak W Gunter
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Sherman A Jones
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ian A Paul
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Donna M Platt
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - James K Rowlett
- Department of Psychiatry and Human Behavior, Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Program in Neuroscience, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA, 70433, USA.
| |
Collapse
|
7
|
Abstract
The abuse of synthetic psychoactive substances known as "designer drugs," or "new psychoactive substances" (NPS), is increasing at an alarming rate. NPS are purchased as alternatives to traditional illicit drugs of abuse and are manufactured to circumvent laws regulating the sale and use of controlled substances. Synthetic cathinones (i.e., "bath salts") and synthetic cannabinoids (i.e., "spice") are two types of NPS that have received substantial media attention. Although low recreational doses of bath salts or spice compounds can produce desirable effects, high doses or chronic exposure often leads to dangerous medical consequences, including psychosis, violent behaviors, tachycardia, hyperthermia, and even death. Despite the popularity of NPS, there is a paucity of scientific data about these drugs. Here we provide a brief up-to-date review describing the mechanisms of action and neurobiological effects of synthetic cathinones and cannabinoids.
Collapse
|
8
|
Wakley AA, Wiley JL, Craft RM. Sex differences in antinociceptive tolerance to delta-9-tetrahydrocannabinol in the rat. Drug Alcohol Depend 2014; 143:22-8. [PMID: 25131716 PMCID: PMC4161674 DOI: 10.1016/j.drugalcdep.2014.07.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sex differences in cannabinoid effects have been reported in rodents, with adult females typically being more sensitive than adult males. The present study compared the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) in adult, gonadally intact female vs. male rats. METHODS Cumulative dose-effect curves were obtained for THC (1.0-18 mg/kg i.p.) on warm water tail withdrawal and paw pressure tests. Vehicle or the sex-specific ED80 dose for THC was administered twice daily for 9 days; THC dose-effect curves were then re-determined. RESULTS On the pre-chronic test day, THC was significantly more potent in females than males in producing antinociception on the tail withdrawal and paw pressure tests. After 9 days of twice-daily THC treatment (5.4 mg/kg/injection in females and 7.6 mg/kg/injection in males), THC potency on both tests decreased more in females than males. On the tail withdrawal test, chronic THC produced 4.2- vs. 2.8-fold increases in ED50 values in females vs. males, respectively. On the paw pressure test, chronic THC produced 4.4- vs. 2.9-fold increases in ED50 values in females vs. males, respectively. Chronic THC treatment did not significantly disrupt estrous cycling in females. CONCLUSIONS These results demonstrate that--even when sex differences in acute THC potency are controlled--females develop more antinociceptive tolerance to THC than males. Given the importance of drug tolerance in the development of drug dependence, these results suggest that females may be more vulnerable than males to developing dependence after chronic cannabinoid exposure.
Collapse
Affiliation(s)
- Alexa A Wakley
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA
| | - Jenny L Wiley
- RTI International, Research Triangle Park, NC 27709-2194, USA
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, WA 99164-4820, USA.
| |
Collapse
|
9
|
Wiley JL, Lefever TW, Cortes RA, Marusich JA. Cross-substitution of Δ9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats. Pharmacol Biochem Behav 2014; 124:123-8. [PMID: 24887450 DOI: 10.1016/j.pbb.2014.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 11/25/2022]
Abstract
Synthetic indole-derived cannabinoids, originally developed to probe cannabinoid CB1 and CB2 receptors, have become widely abused for their marijuana-like intoxicating properties. The present study examined the effects of indole-derived cannabinoids in rats trained to discriminate Δ(9)-tetrahydrocannabinol (Δ(9)-THC) from vehicle. In addition, the effects of Δ(9)-THC in rats trained to discriminate JWH-018 from vehicle were assessed. Adult male Sprague-Dawley rats were trained to discriminate 3mg/kg Δ(9)-THC or 0.3mg/kg JWH-018 from vehicle. JWH-018, JWH-073, and JWH-210 fully substituted in Δ(9)-THC-trained rats and Δ(9)-THC substituted in JWH-018-trained rats. In contrast, JWH-320, an indole-derived cannabinoid without affinity for CB1 receptors, failed to substitute for Δ(9)-THC. Pre-treatment with 1mg/kg rimonabant significantly reduced responding on the JWH-018-associated lever in JWH-018-trained rats. These results support the conclusion that the interoceptive effects of Δ(9)-THC and synthetic indole-derived cannabinoids show a large degree of overlap, which is predictive of their use for their marijuana-like intoxicating properties. Characterization of the extent of pharmacological differences among structural classes of cannabinoids, and determination of their mechanisms remain important goals.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA.
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Ricardo A Cortes
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Lefever TW, Marusich JA, Antonazzo KR, Wiley JL. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model. Pharmacol Biochem Behav 2014; 118:30-5. [PMID: 24412835 DOI: 10.1016/j.pbb.2014.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/27/2013] [Accepted: 01/03/2014] [Indexed: 11/16/2022]
Abstract
Because Δ(9)-tetrahydrocannabinol (THC) has been a false negative in rat intravenous self-administration procedures, the evaluation of the abuse potential of candidate cannabinoid medications has proved difficult. One lab group has successfully trained self-administration of the aminoalkylindole WIN55,212-2 in rats; however, their results have not been independently replicated. The purpose of this study was to extend their model by using a within-subjects design, with the goal of establishing a robust method suitable for substitution testing of other cannabinoids. Male Long-Evans rats were trained to self-administer WIN55,212-2 (0.01 mg/kg/infusion) on a fixed ratio 3 schedule. Dose-effect curves for WIN55,212-2 were determined, followed by vehicle substitution and a dose-effect curve with THC. WIN55,212-2 self-administration was acquired; however, substitution with THC did not maintain responding above vehicle levels. Dose-dependent attenuation by rimonabant confirmed CB1 receptor mediation of WIN55,212-2's reinforcing effects. Vehicle substitution resulted in a session-dependent decrease in responding (i.e., extinction). While this study provides systematic replication of previous studies, lack of substitution with THC is problematic and suggests that WIN55,212-2 self-administration may be of limited usefulness as a screening tool for detection of the reinforcing effects of potential cannabinoid medications. Clarification of underlying factors responsible for failure of THC to maintain self-administration in cannabinoid-trained rats is needed.
Collapse
Affiliation(s)
| | | | | | - Jenny L Wiley
- RTI International, Research Triangle Park, NC27709-2194, USA.
| |
Collapse
|