1
|
Kaebisch E, Fuss TL, Vandergrift L, Toews K, Habbel P, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies I-cell line and animal models. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3700. [PMID: 28301071 PMCID: PMC5501085 DOI: 10.1002/nbm.3700] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 12/31/2016] [Indexed: 05/09/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS allows for direct measurements of non-liquid tissue and cell specimens to present valuable insights into the cellular metabolisms of physiological and pathological processes. HRMAS produces high-resolution spectra comparable to those obtained from solutions of specimen extracts but without complex metabolite extraction processes, and preserves the tissue cellular structure in a form suitable for pathological examinations following spectroscopic analysis. The technique has been applied in a wide variety of biomedical and biochemical studies and become one of the major platforms of metabolomic studies. By quantifying single metabolites, metabolite ratios, or metabolic profiles in their entirety, HRMAS presents promising possibilities for diagnosis and prediction of clinical outcomes for various diseases, as well as deciphering of metabolic changes resulting from drug therapies or xenobiotic interactions. In this review, we evaluate HRMAS MRS results on animal models and cell lines reported in the literature, and present the diverse applications of the method for the understanding of pathological processes and the effectiveness of therapies, development of disease animal models, and new progress in HRMAS methodology.
Collapse
Affiliation(s)
- Eva Kaebisch
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Taylor L. Fuss
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Lindsey Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Karin Toews
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding Author: Leo L. Cheng, PhD, 149 13 Street, CNY-6, Charlestown, MA 02129, Ph.617-724-6593, Fax.617-726-5684,
| |
Collapse
|
2
|
Abstract
The fruit fly Drosophila is a centenarian in research service, but a novice as an invertebrate model system for energy homeostasis research. The last couple of years, however, witnessed numerous technical advances driving the rise of this model organism in central areas of energy balance research such as food perception, feeding control, energy flux and lipometabolism. These studies demonstrate an unanticipated evolutionary conservation of genes and mechanisms governing central aspects of energy homeostasis. Accordingly, research on Drosophila promises both, a systems biology view on the regulatory network, which governs lifelong energy control in a complex eukaryotic organism as well as, important insights into the mammalian energy balance control with a potential impact on the diagnostic and therapeutic strategies in the treatment of human lipopathologies such as obesity.
Collapse
Affiliation(s)
- Ronald P Kühnlein
- Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|