1
|
Sharma P, Liu Chung Ming C, Wang X, Bienvenu LA, Beck D, Figtree GA, Boyle A, Gentile C. Biofabrication of advanced in vitro3D models to study ischaemic and doxorubicin-induced myocardial damage. Biofabrication 2022; 14. [PMID: 34983029 DOI: 10.1088/1758-5090/ac47d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Abstract
Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control versus I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control versus I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damage by recapitulating their complex in vivoscenario.
Collapse
Affiliation(s)
- Poonam Sharma
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Laura A Bienvenu
- Baker Heart and Diabetes Institute South Australia, 75 Commercial Road, Melbourne, Victoria, 3004, AUSTRALIA
| | - Domink Beck
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, University of Technology Sydney, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | - Gemma A Figtree
- , The University of Sydney Faculty of Medicine and Health, Reserve Rd, Sydney, New South Wales, 2000, AUSTRALIA
| | - Andrew Boyle
- The University of Newcastle Faculty of Health and Medicine, Kookaburra Cct, New Lambton Heights, New South Wales, 2305, AUSTRALIA
| | - Carmine Gentile
- University of Technology Sydney Faculty of Engineering, Building 11, Level 10, Room 115, 81 Broadway St, Ultimo, Sydney, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| |
Collapse
|
2
|
Gnyawali SC, Sinha M, El Masry MS, Wulff B, Ghatak S, Soto-Gonzalez F, Wilgus TA, Roy S, Sen CK. High resolution ultrasound imaging for repeated measure of wound tissue morphometry, biomechanics and hemodynamics under fetal, adult and diabetic conditions. PLoS One 2020; 15:e0241831. [PMID: 33227015 PMCID: PMC7682876 DOI: 10.1371/journal.pone.0241831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Non-invasive, repeated interrogation of the same wound is necessary to understand the tissue repair continuum. In this work, we sought to test the significance of non-invasive high-frequency high-resolution ultrasound technology for such interrogation. High-frequency high-resolution ultrasound imaging was employed to investigate wound healing under fetal and adult conditions. Quantitative tissue cellularity and elastic strain was obtained for visualization of unresolved inflammation using Vevo strain software. Hemodynamic properties of the blood flow in the artery supplying the wound-site were studied using color Doppler flow imaging. Non-invasive monitoring of fetal and adult wound healing provided unprecedented biomechanical and functional insight. Fetal wounds showed highly accelerated closure with transient perturbation of wound tissue cellularity. Fetal hemodynamics was unique in that sharp fall in arterial pulse pressure (APP) which was rapidly restored within 48h post-wounding. In adults, APP transiently increased post-wounding before returning to the pre-wounding levels by d10 post-wounding. The pattern of change in the elasticity of wound-edge tissue of diabetics was strikingly different. Severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of the non-diabetic group. Wound bed of adult diabetic mice (db/db) showed persistent hypercellularity compared to littermate controls (db/+) indicative of prolonged inflammation. Normal skin strain of db/+ and db/db were asynchronous. In db/db, severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of non-diabetics. This study showcases a versatile clinically relevant imaging platform suitable for real-time analyses of functional wound healing.
Collapse
Affiliation(s)
- Surya C. Gnyawali
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Mithun Sinha
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mohamed S. El Masry
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Plastic and Reconstructive Surgery, Zagazig University, Zagazig, Egypt
| | - Brian Wulff
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Fidel Soto-Gonzalez
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Traci A. Wilgus
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Chandan K. Sen
- Department of Surgery, Davis Heart and Lung Research Institute, Center for Regenerative Medicine & Cell-Based Therapies, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Surgery, IUH Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, United States of America
| |
Collapse
|
4
|
Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, Chang L, Liao WC, Shi J, Sinha M, Singh K, Steen E, Sunyecz A, Stewart R, Moore J, Ziebro T, Northcutt RG, Homsy M, Bertani P, Lu W, Roy S, Khanna S, Rink C, Sundaresan VB, Otero JJ, Lee LJ, Sen CK. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. NATURE NANOTECHNOLOGY 2017; 12:974-979. [PMID: 28785092 PMCID: PMC5814120 DOI: 10.1038/nnano.2017.134] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/09/2017] [Indexed: 05/08/2023]
Abstract
Although cellular therapies represent a promising strategy for a number of conditions, current approaches face major translational hurdles, including limited cell sources and the need for cumbersome pre-processing steps (for example, isolation, induced pluripotency). In vivo cell reprogramming has the potential to enable more-effective cell-based therapies by using readily available cell sources (for example, fibroblasts) and circumventing the need for ex vivo pre-processing. Existing reprogramming methodologies, however, are fraught with caveats, including a heavy reliance on viral transfection. Moreover, capsid size constraints and/or the stochastic nature of status quo approaches (viral and non-viral) pose additional limitations, thus highlighting the need for safer and more deterministic in vivo reprogramming methods. Here, we report a novel yet simple-to-implement non-viral approach to topically reprogram tissues through a nanochannelled device validated with well-established and newly developed reprogramming models of induced neurons and endothelium, respectively. We demonstrate the simplicity and utility of this approach by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced ischaemia.
Collapse
Affiliation(s)
- Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Durba Pal
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Subhadip Ghatak
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Veysi Malkoc
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Natalia Higuita-Castro
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Surya Gnyawali
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wei-Ching Liao
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mithun Sinha
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kanhaiya Singh
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Erin Steen
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alec Sunyecz
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Richard Stewart
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jordan Moore
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ziebro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert G. Northcutt
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Homsy
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Bertani
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sashwati Roy
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Savita Khanna
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Cameron Rink
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jose J. Otero
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | - L. James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- ;
| | - Chandan K. Sen
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, USA
- Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, Ohio 43210, USA
- ;
| |
Collapse
|