1
|
Li Z, Yu Y, Kang J, Zheng Y, Xu J, Xu K, Hou K, Hou Y, Chi G. MicroRNA-124 Overexpression in Schwann Cells Promotes Schwann Cell-Astrocyte Integration and Inhibits Glial Scar Formation Ability. Front Cell Neurosci 2020; 14:144. [PMID: 32714149 PMCID: PMC7347021 DOI: 10.3389/fncel.2020.00144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Schwann cell (SC) transplantation is a promising approach for the treatment of spinal cord injury (SCI); however, SC grafts show a low migratory capacity within the astrocytic environment, which inevitably hampers their therapeutic efficacy. The purpose of this study was to explore mechanisms to modify the characteristics of SCs and astrocytes (ASs), as well as to adjust the SC-AS interface to break the SC-AS boundary, thus improving the benefits of SCI treatment. We observed that the expression levels of miR-124 in SCs and ASs were significantly lower than those in the normal spinal cord. Furthermore, overexpressing miR-124 in SCs (miR-124-SCs) significantly inhibited gene and protein expression levels of SC-specific markers, such as GFAP and Krox20. The expression of neurotrophic factors, Bdnf and Nt-3, was up-regulated in miR-124-SCs without affecting their proliferation. Further, the boundary assay showed an increased number of miR-124-SCs that had actively migrated and entered the astrocytic region to intermingle with ASs, compared with normal SCs. In addition, although Krox20 protein expression was down-regulated in miR-124-SCs, the luciferase assay showed that Krox20 is not a direct target of miR-124. RNA sequencing of miR-124-SCs revealed seven upregulated and eleven downregulated genes involved in cell migration and motility. Based on KEGG pathway and KOG functional analyses, changes in these genes corresponded to the activation of Hippo, FoxO, and TGF-beta signaling pathways, cytokine-cytokine receptor interactions, and the cell cycle. Finally, co-culturing of miR-124-SCs and ASs in a transwell system revealed that GFAP and p-STAT3 protein expression in ASs was significantly reduced. Collectively, these results show that overexpression of miR-124 in SCs promotes SC-AS integration in vitro and may attenuate the capacity of ASs to form glial scars. Thus, this study provides novel insights into modifying SCs by overexpressing miR-124 to improve their therapeutic potential in SCI.
Collapse
Affiliation(s)
- Zhijun Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Juanjuan Kang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yi Hou
- Department of Regeneration Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Gao J, Xia B, Li S, Huang L, Ma T, Shi X, Luo K, Yang Y, Zhao L, Zhang H, Luo B, Huang J. Magnetic Field Promotes Migration of Schwann Cells with Chondroitinase ABC (ChABC)-Loaded Superparamagnetic Nanoparticles Across Astrocyte Boundary in vitro. Int J Nanomedicine 2020; 15:315-332. [PMID: 32021182 PMCID: PMC6980842 DOI: 10.2147/ijn.s227328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The clinical outcome of spinal cord injury is usually poor due to the lack of axonal regeneration and glia scar formation. As one of the most classical supporting cells in neural regeneration, Schwann cells (SCs) provide bioactive substrates for axonal migration and release molecules that regulate axonal growth. However, the effect of SC transplantation is limited by their poor migration capacity in the astrocyte-rich central nervous system. METHODS In this study, we first magnetofected SCs with chondroitinase ABC-polyethylenimine functionalized superparamagnetic iron oxide nanoparticles (ChABC/PEI-SPIONs) to induce overexpression of ChABC for the removal of chondroitin sulfate proteoglycans. These are inhibitory factors and forming a dense scar that acts as a barrier to the regenerating axons. In vitro, we observed the migration of SCs in the region of astrocytes after the application of a stable external magnetic field. RESULTS We found that magnetofection with ChABC/PEI-SPIONs significantly up-regulated the expression of ChABC in SCs. Under the driven effect of the directional magnetic field (MF), the migration of magnetofected SCs was enhanced in the direction of the magnetic force. The number of SCs with ChABC/PEI-SPIONs migrated and the distance of migration into the astrocyte region was significantly increased. The number of SCs with ChABC/PEI-SPIONs that migrated into the astrocyte region was 11.6- and 4.6-fold higher than those observed for the intact control and non-MF groups, respectively. Furthermore, it was found that SCs with ChABC/PEI-SPIONs were in close contact with astrocytes and no longer formed boundaries in the presence of MF. CONCLUSION The mobility of the SCs with ChABC/PEI-SPIONs was enhanced along the axis of MF, holding the potential to promote nerve regeneration by providing a bioactive microenvironment and relieving glial obstruction to axonal regeneration in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Liangliang Huang
- Department of Orthopaedics, The General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, People’s Republic of China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiaowei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Kai Luo
- Department of Orthopaedics, The 985th Hospital of the PLA Joint Logistics Support Force, Taiyuan, People’s Republic of China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Laihe Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hao Zhang
- Department of Spinal Surgery, People’s Hospital of Longhua District, Shenzhen, People’s Republic of China
| | - Beier Luo
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
3
|
Chen M, Shah MP, Shelper TB, Nazareth L, Barker M, Tello Velasquez J, Ekberg JAK, Vial ML, St John JA. Naked Liquid Marbles: A Robust Three-Dimensional Low-Volume Cell-Culturing System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9814-9823. [PMID: 30724549 DOI: 10.1021/acsami.8b22036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional (3D) multicellular structures allow cells to behave and interact with each other in a manner that mimics the in vivo environment. In recent years, many 3D cell culture methods have been developed with the goal of producing the most in vivo-like structures possible. Whilst strongly preferable to conventional cell culture, these approaches are often poorly reproducible, time-consuming, expensive, and labor-intensive and require specialized equipment. Here, we describe a novel 3D culture platform, which we have termed the naked liquid marble (NLM). Cells are cultured in a liquid drop (the NLM) in superhydrophobic-coated plates, which causes the cells to naturally form 3D structures. Inside the NLMs, cells are free to interact with each other, forming multiple 3D spheroids that are uniform in size and shape in less than 24 h. We showed that this system is highly reproducible, suitable for cell coculture, compound screening, and also compatible with laboratory automation systems. The low cost of production, small volume of each NLM, and production via automated liquid handling make this 3D cell-culturing system particularly suitable for high-throughput screening assays such as drug testing as well as numerous other cell-based research applications.
Collapse
Affiliation(s)
- Mo Chen
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | - Megha P Shah
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | - Todd B Shelper
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | | | | | - Jenny A K Ekberg
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | - Marie-Laure Vial
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| | - James A St John
- Menzies Health Institute Queensland , Griffith University , Southport , 4222 Queensland , Australia
| |
Collapse
|
4
|
Madigan NN, Chen BK, Knight AM, Rooney GE, Sweeney E, Kinnavane L, Yaszemski MJ, Dockery P, O'Brien T, McMahon SS, Windebank AJ. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord. Tissue Eng Part A 2014; 20:2985-97. [PMID: 24854680 DOI: 10.1089/ten.tea.2013.0551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF(+)) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF(+) scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF(+) scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration.
Collapse
Affiliation(s)
- Nicolas N Madigan
- 1 Department of Neurology, Mayo Clinic College of Medicine , Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|