1
|
McLean FE, Azasi Y, Sutherland C, Toboh E, Ansong D, Agbenyega T, Awandare G, Rowe JA. Detection of naturally acquired, strain-transcending antibodies against rosetting Plasmodium falciparum strains in humans. Infect Immun 2024; 92:e0001524. [PMID: 38842304 PMCID: PMC11238554 DOI: 10.1128/iai.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Azasi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cameron Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Kioko M, Pance A, Mwangi S, Goulding D, Kemp A, Rono M, Ochola-Oyier LI, Bull PC, Bejon P, Rayner JC, Abdi AI. Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum. Nat Commun 2023; 14:6447. [PMID: 37833314 PMCID: PMC10575976 DOI: 10.1038/s41467-023-42103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Plasmodium falciparum secretes extracellular vesicles (PfEVs) that contain parasite-derived RNA. However, the significance of the secreted RNA remains unexplored. Here, we compare secreted and intracellular RNA from asexual cultures of six P. falciparum lines. We find that secretion of RNA via extracellular vesicles is not only periodic throughout the asexual intraerythrocytic developmental cycle but is also highly conserved across P. falciparum isolates. We further demonstrate that the phases of RNA secreted via extracellular vesicles are discernibly shifted compared to those of the intracellular RNA within the secreting whole parasite. Finally, transcripts of genes with no known function during the asexual intraerythrocytic developmental cycle are enriched in PfEVs compared to the whole parasite. We conclude that the secretion of extracellular vesicles could be a putative posttranscriptional RNA regulation mechanism that is part of or synergise the classic RNA decay processes to maintain intracellular RNA levels in P. falciparum.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, Milton Keynes, UK
| | - Alena Pance
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
- School of Life and Medical Science, University of Hertfordshire, Hatfield, UK
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - David Goulding
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alison Kemp
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Martin Rono
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | | | - Pete C Bull
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Nava-Lausón C, Spencer LM, Sajo-Bohus L, Dávila J, Tellkamp MP. Evaluation of X-ray ionizing radiation on Plasmodium berghei invasion of erythrocytes. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Developing new strategies for designing effective vaccines has become a priority for parasitologists worldwide. There is high interest in designing a vaccine against malaria since it is considered one of the most prevalent infectious diseases in the tropics. We evaluated the effects of X-rays irradiation on the erythrocytic stage of Plasmodium berghei ANKA merozoites and schizonts using doses of ionizing radiation ranging between 10 and 300 Gy on parasitized red blood cells (PRBC) to study the attenuating effects of radiation on the merozoites. Parasitic activity diminution was observed starting at 50 Gy, and the dose for complete attenuation was established at 200 Gy, corresponding with a 100% survival rate of mice. In vivo invasion experiments and immunofluorescence assays (IFA) showed inhibition of merozoite invasion of the host red blood cells (RBC). Nonetheless, immunization with irradiated parasitized red blood cells (IPRBC) was ineffective in protective assays. We perform cytoadherence and inhibition of cytoadhesion assays on irradiated merozoites. The results showed that high irradiation doses caused an unspecific cellular adhesion phenomenon independent of the ICAM-1 and CD36 interaction, which was determined by Cytoadhesion assays.
Our results show that, even though X-ray irradiation is an effective method to induce complete parasite attenuation, it might affect the parasite's membrane surface structures triggering unspecific adhesion.
Collapse
Affiliation(s)
- Carina Nava-Lausón
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas - Venezuela
| | - Lilian M. Spencer
- Cell Biology Department, Simón Bolívar University, Valle de Sartenejas, Caracas - Venezuela School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí - Ecuador
| | - Laszlo Sajo-Bohus
- Physics Department, Simón Bolívar University, Valle de Sartenejas, Caracas - Venezuela
| | - Jesús Dávila
- Radiotherapy Service Gurve, La Trinidad. Caracas, Venezuela
| | - Markus P. Tellkamp
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí - Ecuador
| |
Collapse
|
4
|
Azasi Y, Low LM, Just AN, Raghavan SSR, Wang CW, Valenzuela-Leon P, Rowe JA, Smith JD, Lavstsen T, Turner L, Calvo E, Miller LH. Complement C1s cleaves PfEMP1 at interdomain conserved sites inhibiting Plasmodium falciparum cytoadherence. Proc Natl Acad Sci U S A 2021; 118:e2104166118. [PMID: 34035177 PMCID: PMC8179237 DOI: 10.1073/pnas.2104166118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.
Collapse
Affiliation(s)
- Yvonne Azasi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Leanne M Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Ashley N Just
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sai S R Raghavan
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Joseph D Smith
- Center for Global Infectious Disease Resesarch, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| |
Collapse
|
5
|
Joste V, Guillochon E, Fraering J, Vianou B, Watier L, Jafari-Guemouri S, Cot M, Houzé S, Aubouy A, Faucher JF, Argy N, Bertin GI. PfEMP1 A-Type ICAM-1-Binding Domains Are Not Associated with Cerebral Malaria in Beninese Children. mBio 2020; 11:e02103-20. [PMID: 33203751 PMCID: PMC7683394 DOI: 10.1128/mbio.02103-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
PfEMP1 is the major antigen involved in Plasmodium falciparum-infected erythrocyte sequestration in cerebrovascular endothelium. While some PfEMP1 domains have been associated with clinical phenotypes of malaria, formal associations between the expression of a specific domain and the adhesion properties of clinical isolates are limited. In this context, 73 cerebral malaria (CM) and 98 uncomplicated malaria (UM) Beninese children were recruited. We attempted to correlate the cytoadherence phenotype of Plasmodium falciparum isolates with the clinical presentation and the expression of specific PfEMP1 domains. Cytoadherence level on Hbec-5i and CHO-ICAM-1 cell lines and var genes expression were measured. We also investigated the prevalence of the ICAM-1-binding amino acid motif and dual receptor-binding domains, described as a potential determinant of cerebral malaria pathophysiology. We finally evaluated IgG levels against PfEMP1 recombinant domains (CIDRα1.4, DBLβ3, and CIDRα1.4-DBLβ3). CM isolates displayed higher cytoadherence levels on both cell lines, and we found a correlation between CIDRα1.4-DBLβ1/3 domain expression and CHO-ICAM-1 cytoadherence level. Endothelial protein C receptor (EPCR)-binding domains were overexpressed in CM isolates compared to UM whereas no difference was found in ICAM-1-binding DBLβ1/3 domain expression. Surprisingly, both CM and UM isolates expressed ICAM-1-binding motif and dual receptor-binding domains. There was no difference in IgG response against DBLβ3 between CM and UM isolates expressing ICAM-1-binding DBLβ1/3 domain. It raises questions about the role of this motif in CM pathophysiology, and further studies are needed, especially on the role of DBLβ1/3 without the ICAM-1-binding motif.IMPORTANCE Cerebral malaria pathophysiology remains unknown despite extensive research. PfEMP1 proteins have been identified as the main Plasmodium antigen involved in cerebrovascular endothelium sequestration, but it is unclear which var gene domain is involved in Plasmodium cytoadhesion. EPCR binding is a major determinant of cerebral malaria whereas the ICAM-1-binding role is still questioned. Our study confirmed the EPCR-binding role in CM pathophysiology with a major overexpression of EPCR-binding domains in CM isolates. In contrast, ICAM-1-binding involvement appears less obvious with A-type ICAM-1-binding and dual receptor-binding domain expression in both CM and UM isolates. We did not find any variations in ICAM-1-binding motif sequences in CM compared to UM isolates. UM and CM patients infected with isolates expressing the ICAM-1-binding motif displayed similar IgG levels against DBLβ3 recombinant protein. Our study raises interrogations about the role of these domains in CM physiopathology and questions their use in vaccine strategies against cerebral malaria.
Collapse
Affiliation(s)
- V Joste
- Université de Paris, MERIT, IRD, Paris, France
| | | | - J Fraering
- Université de Paris, MERIT, IRD, Paris, France
| | - B Vianou
- Université de Paris, MERIT, IRD, Paris, France
- Institut de Recherche Clinique du Bénin (IRCB), Cotonou, Bénin
| | - L Watier
- Department of Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases (B2PHI), Inserm, UVSQ, Institut Pasteur, Université Paris-Saclay, Paris, France
| | | | - M Cot
- Université de Paris, MERIT, IRD, Paris, France
| | - S Houzé
- Université de Paris, MERIT, IRD, Paris, France
- Parasitology Laboratory, Bichat-Claude Bernard hospital, Paris, France
- Malaria National Reference Center, Bichat-Claude Bernard hospital, Paris, France
| | - A Aubouy
- Université de Toulouse, PHARMADEV, IRD, UPS, Toulouse, France
| | - J F Faucher
- Université de Limoges, NET, INSERM, Limoges, France
| | - N Argy
- Université de Paris, MERIT, IRD, Paris, France
- Parasitology Laboratory, Bichat-Claude Bernard hospital, Paris, France
- Malaria National Reference Center, Bichat-Claude Bernard hospital, Paris, France
| | - G I Bertin
- Université de Paris, MERIT, IRD, Paris, France
| |
Collapse
|
6
|
Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 2020; 19:266. [PMID: 32703204 PMCID: PMC7376930 DOI: 10.1186/s12936-020-03336-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including exposure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not sufficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments to address CM neurologic sequelae.
Collapse
Affiliation(s)
- Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Andres Villabona-Rueda
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Karissa E Cottier
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.,BioIVT, 1450 South Rolling Road, Baltimore, MD, USA
| | | | - James Chipeta
- Department of Paediatrics, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Monique F Stins
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol 2018; 1:211. [PMID: 30534603 PMCID: PMC6269544 DOI: 10.1038/s42003-018-0223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Sickle cell trait, a common hereditary blood disorder, protects carriers from severe disease in infections with the human malaria parasite Plasmodium falciparum. Protection is associated with a reduced capacity of parasitized erythrocytes to cytoadhere to the microvascular endothelium and cause vaso-occlusive events. However, the underpinning cellular and biomechanical processes are only partly understood and the impact on endothelial cell activation is unclear. Here, we show, by combining quantitative flow chamber experiments with multiscale computer simulations of deformable cells in hydrodynamic flow, that parasitized erythrocytes containing the sickle cell haemoglobin displayed altered adhesion dynamics, resulting in restricted contact footprints on the endothelium. Main determinants were cell shape, knob density and membrane bending. As a consequence, the extent of endothelial cell activation was decreased. Our findings provide a quantitative understanding of how the sickle cell trait affects the dynamic cytoadhesion behavior of parasitized erythrocytes and, in turn, endothelial cell activation.
Collapse
|
8
|
Liu X, Wang Y, Liang J, Wang L, Qin N, Zhao Y, Zhao G. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome. BMC Genomics 2018; 19:312. [PMID: 29716542 PMCID: PMC5930813 DOI: 10.1186/s12864-018-4654-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Results Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract genes highly transcribed at the trophozoite stage. Finally, 55 candidate genes were identified. Considering that parasite-infected erythrocyte surface protein 2 (PIESP2) contains gap-junction-related Neuromodulin_N domain and that anti-PIESP2 might provide protection against malaria, we chose PIESP2 for further experimental study. Conclusions Our analysis revealed a limited number of genes linked to human disease in P. falciparum genome. These genes could be interesting targets for further functional characterization. Electronic supplementary material The online version of this article (10.1186/s12864-018-4654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuewu Liu
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Liang
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Luojun Wang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Na Qin
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya Zhao
- Department of Pathogenic Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc Natl Acad Sci U S A 2018; 115:1063-1068. [PMID: 29339517 PMCID: PMC5798336 DOI: 10.1073/pnas.1712879115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microvasculature underlies the pathology of cerebral malaria. Parasites that express P. falciparum erythrocyte membrane protein 1 of domain cassette (DC) 8 and DC13 types bind to brain endothelial cells. Recent studies, largely based on recombinant proteins, have identified endothelial protein C receptor (EPCR) as the key receptor for endothelial cell binding. Using DC8- and DC13-expressing IEs, we show that binding of DC13 IEs to brain endothelial cells is not EPCR-dependent and that cytoadhesion of EPCR-binding DC8 IEs to brain endothelial cells is blocked by human serum. This study highlights differences between recombinant protein and native protein in EPCR-binding properties and suggests that other receptors are also required for sequestration in cerebral malaria. Recent advances have identified a new paradigm for cerebral malaria pathogenesis in which endothelial protein C receptor (EPCR) is a major host receptor for sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain and other vital organs. The parasite adhesins that bind EPCR are members of the IE variant surface antigen family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) containing specific adhesion domains called domain cassette (DC) 8 and DC13. The binding interaction site between PfEMP1 and EPCR has been mapped by biophysical and crystallography studies using recombinant proteins. However, studies examining the interaction of native PfEMP1 on the IE surface with EPCR are few. We aimed to study binding to EPCR by IEs expressing DC8 and DC13 PfEMP1 variants whose recombinant proteins have been used in key prior functional and structural studies. IE binding to EPCR immobilized on plastic and on human brain endothelial cells was examined in static and flow adhesion assays. Unexpectedly, we found that IEs expressing the DC13 PfEMP1 variant HB3var03 or IT4var07 did not bind to EPCR on plastic and the binding of these variants to brain endothelial cells was not dependent on EPCR. IEs expressing the DC8 variant IT4var19 did bind to EPCR, but this interaction was inhibited if normal human serum or plasma was present, raising the possibility that IE–EPCR interaction may be prevented by plasma components under physiological conditions. These data highlight a discrepancy in EPCR-binding activity between PfEMP1 recombinant proteins and IEs, and indicate the critical need for further research to understand the pathophysiological significance of the PfEMP1–EPCR interaction.
Collapse
|
10
|
Dasanna AK, Lansche C, Lanzer M, Schwarz US. Rolling Adhesion of Schizont Stage Malaria-Infected Red Blood Cells in Shear Flow. Biophys J 2017; 112:1908-1919. [PMID: 28494961 DOI: 10.1016/j.bpj.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
To avoid clearance by the spleen, red blood cells infected with the human malaria parasite Plasmodium falciparum (iRBCs) adhere to the vascular endothelium through adhesive protrusions called "knobs" that the parasite induces on the surface of the host cell. However, the detailed relation between the developing knob structure and the resulting movement in shear flow is not known. Using flow chamber experiments on endothelial monolayers and tracking of the parasite inside the infected host cell, we find that trophozoites (intermediate-stage iRBCs) tend to flip due to their biconcave shape, whereas schizonts (late-stage iRBCs) tend to roll due to their almost spherical shape. We then use adhesive dynamics simulations for spherical cells to predict the effects of knob density and receptor multiplicity per knob on rolling adhesion of schizonts. We find that rolling adhesion requires a homogeneous coverage of the cell surface by knobs and that rolling adhesion becomes more stable and slower for higher knob density. Our experimental data suggest that schizonts are at the border between transient and stable rolling adhesion. They also allow us to establish an estimate for the molecular parameters for schizont adhesion to the vascular endothelium and to predict bond dynamics in the contact region.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Michael Lanzer
- Department of Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
11
|
Utter C, Serrano AE, Glod JW, Leibowitz MJ. Association of Plasmodium falciparum with Human Endothelial Cells in vitro. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:183-193. [PMID: 28656007 PMCID: PMC5482297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria.
Collapse
Affiliation(s)
- Christopher Utter
- Evolution Medical Communications, One Blue Hill Plaza, Pearl River, NY
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - John W. Glod
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Michael J. Leibowitz
- Department of Medical Microbiology & Immunology, University of California-Davis, Davis, CA,To whom all correspondence should be addressed: Michael J. Leibowitz, M.D., Ph.D., Department of Medical Microbiology & Immunology, University of California-Davis, One Shields Avenue, Davis, CA 95616, Tel: (916) 474-5313; Fax: (530) 752-8692, .
| |
Collapse
|
12
|
Plasma Ang2 and ADAM17 levels are elevated during clinical malaria; Ang2 level correlates with severity and expression of EPCR-binding PfEMP1. Sci Rep 2016; 6:35950. [PMID: 27784899 PMCID: PMC5082358 DOI: 10.1038/srep35950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria involves a complex interplay between parasite adhesion and inflammatory response that includes release of cytokines and activation of the endothelium with accompanying release of Angiopoitin 2 (Ang2) to the plasma. A-disintegrin and metalloproteinase 17 (ADAM17) is a protein responsible for releasing cytokines, including Tumor Necrosis Factor α (TNFα), and shedding of adhesion proteins. In this study, we show that plasma levels of ADAM17 are increased in Tanzanian children hospitalized with a malaria infection compared with asymptomatic children but similar to children hospitalized with other infectious diseases. The plasma levels of ADAM17 decreased during recovery after an acute malaria episode. Plasma levels of Ang2 were associated with markers of malaria severity and levels of var transcripts encoding P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) containing Cysteine Rich Inter Domain Region α1 (CIDRα1) domains predicted to bind Endothelial Protein C receptor (EPCR). ADAM17 levels were not associated with expression of var genes encoding different PfEMP1 types when controlling for age. These data are the first to report ADAM17 plasma levels in malaria-exposed individuals, and support the notion that parasite sequestration mediated by EPCR-binding PfEMP1 is associated with endothelial activation and pathology in severe paediatric malaria.
Collapse
|
13
|
Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 2014; 11:1. [PMID: 24467887 PMCID: PMC3905658 DOI: 10.1186/2045-8118-11-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.
Collapse
Affiliation(s)
| | - Mauro Prato
- Dipartimento di Neuroscienze, Università di Torino, C,so Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
14
|
Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infect Immun 2013; 82:949-59. [PMID: 24343658 PMCID: PMC3958005 DOI: 10.1128/iai.01233-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
Collapse
|
15
|
A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A 2012; 109:E1772-81. [PMID: 22619330 DOI: 10.1073/pnas.1120461109] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected and unselected parasites was analyzed using a variant surface antigen-supplemented microarray chip. After selection, the most highly and consistently up-regulated genes were a subset of group A-like var genes (HB3var3, 3D7_PFD0020c, ITvar7, and ITvar19) that showed 11- to >100-fold increased transcription levels. These var genes encode P. falciparum erythrocyte membrane protein (PfEMP)1 variants with distinct N-terminal domain types (domain cassette 8 or domain cassette 13). Antibodies to HB3var3 and PFD0020c recognized the surface of live IEs and blocked binding to HBEC-5i, thereby confirming the adhesive function of these variants. The clinical in vivo relevance of the HBEC-selected parasites was supported by significantly higher surface recognition of HBEC-selected parasites compared with unselected parasites by antibodies from young African children suffering cerebral malaria (Mann-Whitney test, P = 0.029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria.
Collapse
|
16
|
Ghumra A, Semblat JP, Ataide R, Kifude C, Adams Y, Claessens A, Anong DN, Bull PC, Fennell C, Arman M, Amambua-Ngwa A, Walther M, Conway DJ, Kassambara L, Doumbo OK, Raza A, Rowe JA. Induction of strain-transcending antibodies against Group A PfEMP1 surface antigens from virulent malaria parasites. PLoS Pathog 2012; 8:e1002665. [PMID: 22532802 PMCID: PMC3330128 DOI: 10.1371/journal.ppat.1002665] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 03/08/2012] [Indexed: 12/22/2022] Open
Abstract
Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal. Malaria remains one of the world's most deadly diseases. Life-threatening malaria is linked to a process called rosetting, in which malaria parasite-infected red blood cells bind to uninfected red cells to form aggregates that block blood flow in vital organs such as the brain. Current efforts to develop drugs or vaccines against rosetting are hindered by variation in the parasite rosette-mediating proteins, found on the surface of infected red cells. We studied these parasite-derived surface proteins and discovered that although they are variable, they share some common features. We raised antibodies against the rosette-mediating proteins, and found that they cross-reacted with multiple rosetting parasite strains from different countries around the world, including samples collected directly from African children with severe malaria. These findings provide new insights into malaria parasite interactions with human cells, and provide proof of principle that variable parasite molecules from virulent malaria parasites can induce strain-transcending antibodies. Hence, this work provides the foundation for the development of new therapies to treat or prevent life-threatening malaria.
Collapse
Affiliation(s)
- Ashfaq Ghumra
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean-Philippe Semblat
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Ataide
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Yvonne Adams
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antoine Claessens
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Damian N. Anong
- Biotechnology Unit, Faculty of Science, University of Buea, Buea, Cameroon
| | - Peter C. Bull
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare Fennell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Monica Arman
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - David J. Conway
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Lalla Kassambara
- Malaria Research and Training Centre, University of Bamako, Bamako, Mali
| | - Ogobara K. Doumbo
- Malaria Research and Training Centre, University of Bamako, Bamako, Mali
| | - Ahmed Raza
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|