1
|
Iyer D, Mastrogiacomo DM, Li K, Banerjee R, Yang Y, Scallan JP. eNOS Regulates Lymphatic Valve Specification by Controlling β-Catenin Signaling During Embryogenesis in Mice. Arterioscler Thromb Vasc Biol 2023; 43:2197-2212. [PMID: 37767708 PMCID: PMC10655861 DOI: 10.1161/atvbaha.123.319405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Lymphatic valves play a critical role in ensuring unidirectional lymph transport. Loss of lymphatic valves or dysfunctional valves are associated with several diseases including lymphedema, lymphatic malformations, obesity, and ileitis. Lymphatic valves first develop during embryogenesis in response to mechanotransduction signaling pathways triggered by oscillatory lymph flow. In blood vessels, eNOS (endothelial NO synthase; gene name: Nos3) is a well-characterized shear stress signaling effector, but its role in lymphatic valve development remains unexplored. METHODS We used global Nos3-/- mice and cultured human dermal lymphatic endothelial cells to investigate the role of eNOS in lymphatic valve development, which requires oscillatory shear stress signaling. RESULTS Our data reveal a 45% reduction in lymphatic valve specification cell clusters and that loss of eNOS protein inhibited activation of β-catenin and its nuclear translocation. Genetic knockout or knockdown of eNOS led to downregulation of β-catenin target proteins in vivo and in vitro. However, pharmacological inhibition of NO production did not reproduce these effects. Co-immunoprecipitation and proximity ligation assays reveal that eNOS directly binds to β-catenin and their binding is enhanced by oscillatory shear stress. Finally, genetic ablation of the Foxo1 gene enhanced FOXC2 expression and partially rescued the loss of valve specification in the eNOS knockouts. CONCLUSIONS In conclusion, we demonstrate a novel, NO-independent role for eNOS in regulating lymphatic valve specification and propose a mechanism by which eNOS directly binds β-catenin to regulate its nuclear translocation and thereby transcriptional activity.
Collapse
Affiliation(s)
- Drishya Iyer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Diandra M Mastrogiacomo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Kunyu Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Richa Banerjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
2
|
Iyer D, Mastrogiacomo D, Li K, Banerjee R, Yang Y, Scallan JP. Endothelial Nitric Oxide Synthase Regulates Lymphatic Valve Specification By Controlling β - catenin Signaling During Embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536303. [PMID: 37090551 PMCID: PMC10120724 DOI: 10.1101/2023.04.10.536303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Objective Lymphatic valves play a critical role in ensuring unidirectional lymph transport. Loss of lymphatic valves or dysfunctional valves are associated with several diseases including lymphedema, lymphatic malformations, obesity, and ileitis. Lymphatic valves first develop during embryogenesis in response to mechanotransduction signaling pathways triggered by oscillatory lymph flow. In blood vessels, eNOS (gene name: Nos3 ) is a well characterized shear stress signaling effector, but its role in lymphatic valve development remains unexplored. Approach and Results We used global Nos3 -/- mice and cultured hdLECs to investigate the role of eNOS in lymphatic valve development, which requires oscillatory shear stress signaling. Our data reveal a 45% reduction in lymphatic valve specification cell clusters and that loss of eNOS protein inhibited activation of β-catenin and its nuclear translocation. Genetic knockout or knockdown of eNOS led to downregulation of β-catenin target proteins in vivo and in vitro . However, pharmacological inhibition of NO production did not reproduce these effects. Coimmunoprecipitation experiments reveal that eNOS forms a complex with β-catenin and their association is enhanced by oscillatory shear stress. Finally, genetic ablation of the Foxo1 gene enhanced FOXC2 expression and rescued the loss of valve specification in the eNOS knockouts. Conclusion In conclusion, we demonstrate a novel, nitric oxide-independent role for eNOS in regulating lymphatic valve specification and propose a mechanism by which eNOS forms a complex with β-catenin to regulate its nuclear translocation and thereby transcriptional activity.
Collapse
Affiliation(s)
- Drishya Iyer
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| | - Diandra Mastrogiacomo
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| | - Kunyu Li
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| | - Richa Banerjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL USA 33612
| |
Collapse
|
3
|
Lu P, Wang P, Wu B, Wang Y, Liu Y, Cheng W, Feng X, Yuan X, Atteya MM, Ferro H, Sugi Y, Rydquist G, Esmaily M, Butcher JT, Chang CP, Lenz J, Zheng D, Zhou B. A SOX17-PDGFB signaling axis regulates aortic root development. Nat Commun 2022; 13:4065. [PMID: 35831318 PMCID: PMC9279414 DOI: 10.1038/s41467-022-31815-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Developmental etiologies causing complex congenital aortic root abnormalities are unknown. Here we show that deletion of Sox17 in aortic root endothelium in mice causes underdeveloped aortic root leading to a bicuspid aortic valve due to the absence of non-coronary leaflet and mispositioned left coronary ostium. The respective defects are associated with reduced proliferation of non-coronary leaflet mesenchyme and aortic root smooth muscle derived from the second heart field cardiomyocytes. Mechanistically, SOX17 occupies a Pdgfb transcriptional enhancer to promote its transcription and Sox17 deletion inhibits the endothelial Pdgfb transcription and PDGFB growth signaling to the non-coronary leaflet mesenchyme. Restoration of PDGFB in aortic root endothelium rescues the non-coronary leaflet and left coronary ostium defects in Sox17 nulls. These data support a SOX17-PDGFB axis underlying aortic root development that is critical for aortic valve and coronary ostium patterning, thereby informing a potential shared disease mechanism for concurrent anomalous aortic valve and coronary arteries.
Collapse
Affiliation(s)
- Pengfei Lu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yidong Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Cardiovascular Research Center, School of Basic Medical Sciences, Jiaotong University, Xi'an, Shanxi, China
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Cheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuhui Feng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xinchun Yuan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Miriam M Atteya
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Haleigh Ferro
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Grant Rydquist
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Mahdi Esmaily
- School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Ching-Pin Chang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jack Lenz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Pediatrics and Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Ando K, Shih YH, Ebarasi L, Grosse A, Portman D, Chiba A, Mattonet K, Gerri C, Stainier DYR, Mochizuki N, Fukuhara S, Betsholtz C, Lawson ND. Conserved and context-dependent roles for pdgfrb signaling during zebrafish vascular mural cell development. Dev Biol 2021; 479:11-22. [PMID: 34310924 DOI: 10.1016/j.ydbio.2021.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Platelet derived growth factor beta and its receptor, Pdgfrb, play essential roles in the development of vascular mural cells, including pericytes and vascular smooth muscle cells. To determine if this role was conserved in zebrafish, we analyzed pdgfb and pdgfrb mutant lines. Similar to mouse, pdgfb and pdgfrb mutant zebrafish lack brain pericytes and exhibit anatomically selective loss of vascular smooth muscle coverage. Despite these defects, pdgfrb mutant zebrafish did not otherwise exhibit circulatory defects at larval stages. However, beginning at juvenile stages, we observed severe cranial hemorrhage and vessel dilation associated with loss of pericytes and vascular smooth muscle cells in pdgfrb mutants. Similar to mouse, pdgfrb mutant zebrafish also displayed structural defects in the glomerulus, but normal development of hepatic stellate cells. We also noted defective mural cell investment on coronary vessels with concomitant defects in their development. Together, our studies support a conserved requirement for Pdgfrb signaling in mural cells. In addition, these zebrafish mutants provide an important model for definitive investigation of mural cells during early embryonic stages without confounding secondary effects from circulatory defects.
Collapse
Affiliation(s)
- Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan.
| | - Yu-Huan Shih
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institute, Stockholm, Sweden
| | - Ann Grosse
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Daneal Portman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 564 8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, Sendagi Bunkyo-ku, Tokyo, 113 8602, Japan
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds Väg 20, SE-751 85, Uppsala, Sweden; Department of Medicine Huddinge (MedH), Karolinska Institutet, Campus Flemingsberg, Neo, Blickagången 16, Hiss S, Plan 7, SE-141 57, Huddinge, Sweden
| | - Nathan D Lawson
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01650, United States.
| |
Collapse
|
5
|
Murtada SI, Kawamura Y, Li G, Schwartz MA, Tellides G, Humphrey JD. Developmental origins of mechanical homeostasis in the aorta. Dev Dyn 2021; 250:629-639. [PMID: 33341996 PMCID: PMC8089041 DOI: 10.1002/dvdy.283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mechanical homeostasis promotes proper aortic structure and function. Pathological conditions may arise, in part, from compromised or lost homeostasis. There is thus a need to quantify the homeostatic state and when it emerges. Here we quantify changes in mechanical loading, geometry, structure, and function of the murine aorta from the late prenatal period into maturity. RESULTS Our data suggest that a homeostatic set-point is established by postnatal day P2 for the flow-induced shear stress experienced by endothelial cells; this value deviates from its set-point from P10 to P21 due to asynchronous changes in mechanical loading (flow, pressure) and geometry (radius, wall thickness), but is restored thereafter consistent with homeostasis. Smooth muscle contractility also decreases during this period of heightened matrix deposition but is also restored in maturity. The pressure-induced mechanical stress experienced by intramural cells initially remains low despite increasing blood pressure, and then increases while extracellular matrix accumulates. CONCLUSIONS These findings suggest that cell-level mechanical homeostasis emerges soon after birth to allow mechanosensitive cells to guide aortic development, with deposition of matrix after P2 increasingly stress shielding intramural cells. The associated tissue-level set-points that emerge for intramural stress can be used to assess and model the aorta that matures biomechanically by P56.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Yuki Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
An isolated retrograde-perfused newborn mouse heart preparation. MethodsX 2020; 7:101058. [PMID: 32983923 PMCID: PMC7492986 DOI: 10.1016/j.mex.2020.101058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
The Langendorff-perfused model is a powerful tool to study biological responses in the isolated heart in the absence of confounders. The model has been adapted recently to enable study of the isolated mouse heart and the effects of genetic manipulation. Unfortunately, the small size and fragility of the mouse heart pose significant challenges, limiting application of the Langendorff model to the study of adult mice. Cardiac development is a complex and dynamic process that is incompletely understood. Thus, establishing an isolated-perfused heart model in the newborn mouse would be an important and necessary advance. Here we present a method to successfully cannulate and perfuse the isolated newborn murine heart. We describe the basic and fundamental physiological characteristics of the ex-vivo retrograde-perfused beating neonatal heart in wild-type C57Bl/6 male mice. Our approach will enable future study of the physiological and pharmacological responses of the isolated immature murine heart to enhance knowledge of how developmental cardiac biology impacts health and disease.The Langendorff model is a powerful tool to study the heart without confounders. An isolated-perfused newborn murine heart model has yet to be established. We demonstrate the first successful isolated neonatal murine heart preparation.
Collapse
|
7
|
Kim J, Cocciolone AJ, Staiculescu MC, Mecham RP, Wagenseil JE. Captopril treatment during development alleviates mechanically induced aortic remodeling in newborn elastin knockout mice. Biomech Model Mechanobiol 2019; 19:99-112. [PMID: 31270728 DOI: 10.1007/s10237-019-01198-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Deposition of elastin and collagen in the aorta correlates with increases in blood pressure and flow during development, suggesting that the aorta adjusts its mechanical properties in response to hemodynamic stresses. Elastin knockout (Eln-/-) mice have high blood pressure and pathological remodeling of the aorta and die soon after birth. We hypothesized that decreasing blood pressure in Eln-/- mice during development may reduce hemodynamic stresses and alleviate pathological remodeling of the aorta. We treated Eln+/+ and Eln-/- mice with the anti-hypertensive medication captopril throughout embryonic development and then evaluated left ventricular (LV) pressure and aortic remodeling at birth. We found that captopril treatment decreased Eln-/- LV pressure to values near Eln+/+ mice and alleviated the wall thickening and changes in mechanical behavior observed in untreated Eln-/- aorta. The changes in thickness and mechanical behavior in captopril-treated Eln-/- aorta were not due to alterations in measured elastin or collagen amounts, but may have been caused by alterations in smooth muscle cell (SMC) properties. We used a constitutive model to understand how changes in stress contributions of each wall component could explain the observed changes in composite mechanical behavior. Our modeling results show that alterations in the collagen natural configuration and SMC properties in the absence of elastin may explain untreated Eln-/- aortic behavior and that partial rescue of the SMC properties may account for captopril-treated Eln-/- aortic behavior.
Collapse
Affiliation(s)
- Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, One Brookings Dr., CB 1185, St. Louis, MO, 63130, USA.
| |
Collapse
|
8
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
9
|
Karra R, Poss KD. Redirecting cardiac growth mechanisms for therapeutic regeneration. J Clin Invest 2017; 127:427-436. [PMID: 28145902 DOI: 10.1172/jci89786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart failure is a major source of morbidity and mortality. Replacing lost myocardium with new tissue is a major goal of regenerative medicine. Unlike adult mammals, zebrafish and neonatal mice are capable of heart regeneration following cardiac injury. In both contexts, the regenerative program echoes molecular and cellular events that occur during cardiac development and morphogenesis, notably muscle creation through division of cardiomyocytes. Based on studies over the past decade, it is now accepted that the adult mammalian heart undergoes a low grade of cardiomyocyte turnover. Recent data suggest that this cardiomyocyte turnover can be augmented in the adult mammalian heart by redeployment of developmental factors. These findings and others suggest that stimulating endogenous regenerative responses can emerge as a therapeutic strategy for human cardiovascular disease.
Collapse
|
10
|
Zadrozny LM, Neufeld EB, Lucotte BM, Connelly PS, Yu ZX, Dao L, Hsu LY, Balaban RS. Study of the development of the mouse thoracic aorta three-dimensional macromolecular structure using two-photon microscopy. J Histochem Cytochem 2015; 63:8-21. [PMID: 25362141 PMCID: PMC7205446 DOI: 10.1369/0022155414559590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/30/2014] [Indexed: 01/26/2023] Open
Abstract
Using the intrinsic optical properties of collagen and elastin, two-photon microscopy was applied to evaluate the three-dimensional (3D) macromolecular structural development of the mouse thoracic aorta from birth to 60 days old. Baseline development was established in the Scavenger Receptor Class B Type I-Deficient, Hypomorphic Apolipoprotein ER61 (SR-BI KO/ApoeR61(h/h)) mouse in preparation for modeling atherosclerosis. Precise dissection enabled direct observation of the artery wall in situ. En-face, optical sectioning of the aorta provided a novel assessment of the macromolecular structural development. During aortic development, the undulating lamellar elastin layers compressed consistent with the increases in mean aortic pressure with age. In parallel, a net increase in overall wall thickness (p<0.05, in day 60 compared with day 1 mice) occurred with age whereas the ratio of the tunicas adventitia and media to full aortic thickness remained nearly constant across age groups (~1:2.6, respectively). Histochemical analyses by brightfield microscopy and ultrastructure validated structural proteins and lipid deposition findings derived from two-photon microscopy. Development was associated with decreased decorin but not biglycan proteoglycan expression. This non-destructive 3D in situ approach revealed the aortic wall microstructure development. Coupling this approach with the intrinsic optical properties of the macromolecules may provide unique vascular wall 3D structure in many pathological conditions, including aortic atherosclerosis, dissections and aneurysms.
Collapse
Affiliation(s)
- Leah M Zadrozny
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| | - Edward B Neufeld
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| | - Bertrand M Lucotte
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| | - Patricia S Connelly
- Electron Microscopy Core Facility, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (PSC)
| | - Zu-Xi Yu
- Pathology Core, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA(ZXY)
| | - Lam Dao
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| | - Li-Yueh Hsu
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, NIH Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA (LMZ, EBN, BML, LD, LYH, RSB)
| |
Collapse
|
11
|
The epicardium signals the way towards heart regeneration. Stem Cell Res 2014; 13:683-92. [PMID: 24933704 PMCID: PMC4241487 DOI: 10.1016/j.scr.2014.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
From historical studies of developing chick hearts to recent advances in regenerative injury models, the epicardium has arisen as a key player in heart genesis and repair. The epicardium provides paracrine signals to nurture growth of the developing heart from mid-gestation, and epicardium-derived cells act as progenitors of numerous cardiac cell types. Interference with either process is terminal for heart development and embryogenesis. In adulthood, the dormant epicardium reinstates an embryonic gene programme in response to injury. Furthermore, injury-induced epicardial signalling is essential for heart regeneration in zebrafish. Given these critical roles in development, injury response and heart regeneration, the application of epicardial signals following adult heart injury could offer therapeutic strategies for the treatment of ischaemic heart disease and heart failure. The epicardium is a dynamic signalling centre during heart development and injury. Heart repair in lower vertebrates highlights the importance of epicardial signalling. Epicardial signals may be targeted to regenerate adult mammalian hearts.
Collapse
|
12
|
Le VP, Stoka KV, Yanagisawa H, Wagenseil JE. Fibulin-5 null mice with decreased arterial compliance maintain normal systolic left ventricular function, but not diastolic function during maturation. Physiol Rep 2014; 2:e00257. [PMID: 24760511 PMCID: PMC4002237 DOI: 10.1002/phy2.257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/03/2023] Open
Abstract
Abstract The large arteries serve as compliant vessels that store energy during systole and return it during diastole. This function is made possible by the elastic fibers in the arterial wall that are assembled during late embryonic and early postnatal development from various proteins, including fibulin-5. Mice and humans with insufficient amounts of fibulin-5 have reduced arterial compliance as adults. Reduced compliance of the large arteries is correlated with hypertension, reduced cardiac function, and an increased risk of death from cardiac and cardiovascular disease. The goal of this study was to quantify arterial compliance, blood pressure, and left ventricular (LV) function from early postnatal development to young adulthood in fibulin-5 null (Fbln5-/-) mice to determine the effects of reduced arterial compliance during this critical period of elastic fiber assembly. We find that ascending aorta compliance is reduced as early as postnatal day (P) 7 and carotid artery compliance is reduced by P21 in Fbln5-/- mice. We did not find significant increases in systolic blood pressure by P60, but pulse pressures are increased by P21 in Fbln5-/- mice. LV systolic function, as measured by ejection fraction and fractional shortening, is unaffected in Fbln5-/- mice. However, LV diastolic function, as measured by tissue Doppler imaging, is compromised at all ages in Fbln5-/- mice. We propose that Fbln5-/- mice represent a suitable model for further studies to determine mechanistic relationships between arterial compliance and LV diastolic function.
Collapse
Affiliation(s)
- Victoria P. Le
- Department of Biomedical EngineeringSaint Louis UniversitySt. LouisMissouri
| | - Kellie V. Stoka
- Department of Mechanical Engineering and Materials ScienceWashington UniversitySt. LouisMissouri
| | - Hiromi Yanagisawa
- Department of Molecular BiologySouthwestern Medical CenterUniversity of TexasDallasTexas
| | | |
Collapse
|
13
|
Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ. An α-smooth muscle actin (acta2/αsma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 2014; 9:e90590. [PMID: 24594685 PMCID: PMC3940907 DOI: 10.1371/journal.pone.0090590] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels.
Collapse
Affiliation(s)
- Thomas R. Whitesell
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Regan M. Kennedy
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Alyson D. Carter
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Evvi-Lynn Rollins
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Sonja Georgijevic
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Massimo M. Santoro
- VIB Vesalius Research Center, University of Leuven (KU Leuven), Leuven, Belgium
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, and Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Abstract
Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.
Collapse
Affiliation(s)
- Gene H Kim
- Department of Medicine, Section of Cardiology, Institute for Cardiovascular Research, University of Chicago, USA.
| |
Collapse
|
15
|
Shirahata M, Kostuk EW, Pichard LE. Carotid chemoreceptor development in mice. Respir Physiol Neurobiol 2012; 185:20-9. [PMID: 22634368 DOI: 10.1016/j.resp.2012.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Mice are the most suitable species for understanding genetic aspects of postnatal developments of the carotid body due to the availability of many inbred strains and knockout mice. Our study has shown that the carotid body grows differentially in different mouse strains, indicating the involvement of genes. However, the small size hampers investigating functional development of the carotid body. Hypoxic and/or hyperoxic ventilatory responses have been investigated in newborn mice, but these responses are indirect assessment of the carotid body function. Therefore, we need to develop techniques of measuring carotid chemoreceptor neural activity from young mice. Many studies have taken advantage of the knockout mice to understand chemoreceptor function of the carotid body, but they are not always suitable for addressing postnatal development of the carotid body due to lethality during perinatal periods. Various inbred strains with well-designed experiments will provide useful information regarding genetic mechanisms of the postnatal carotid chemoreceptor development. Also, targeted gene deletion is a critical approach.
Collapse
Affiliation(s)
- Machiko Shirahata
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|