1
|
McCarty GS, Meunier CJ, Sombers LA. Dioxythiophene/Nafion Polymer Composite Membranes for Tunable Size-Based Selectivity in the Voltammetric Detection of Small Neuropeptides. ACS Sens 2024; 9:5109-5115. [PMID: 39319559 DOI: 10.1021/acssensors.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Carbon-fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior. Each is comprised of only five amino acids including tyrosine, an electroactive species. Electroanalytical measurements targeting tyrosine can reveal the dynamics of endogenous enkephalin transients in live tissue. However, when using electrochemistry in a biological system, selectivity is always a concern. Many larger neuropeptides also contain tyrosine. As such, they could generate a redox signature similar to that of the enkephalins, potentially confounding the measurement. In this work, three distinctly sized dioxythiophene monomers were mixed with Nafion and electrodeposited onto cylindrical carbon-fiber microelectrodes to form composite polymer films that allow for the tunable, size-based exclusion of larger molecules. The dioxythiophene monomers 3,4-ethylenedioxythiophene (EDOT), 3,4-propylenedioxythiophene (ProDOT), and 3,4-(2',2'-diethylpropylene) dioxythiophene (ProDOT-Et2) were used to create nanostructured pores of increasing size. The dioxythiophene/Nafion modified electrodes were characterized in the voltammetric detection of dopamine, a classic small molecule neurotransmitter, and a series of tyrosine containing neuropeptides of increasing size: met-enkephalin (M-ENK; 5 residues), oxytocin (OXY; 9 residues), neurotensin (NT; 13 residues), and neuropeptide Y (NPY; 36 residues). The modified electrodes exhibited enhanced selectivity for smaller peptide species over larger peptides in a manner consistent with the size of the dioxythiophene monomer incorporated into the polymeric film, allowing for tunability in terms of size-based selective detection.
Collapse
Affiliation(s)
- Gregory S McCarty
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carl J Meunier
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Artner C, Bohrer B, Pasquini L, Mazurenko I, Lahrach N, Byrne D, de Poulpiquet A, Lojou E. Effects of interactions between SPEEK or Nafion ionomers and bilirubin oxidase on O2 enzymatic reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
A Short Overview of Biological Fuel Cells. MEMBRANES 2022; 12:membranes12040427. [PMID: 35448397 PMCID: PMC9031071 DOI: 10.3390/membranes12040427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
This short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact. In comparison with classical FCs and given their lower electrochemical performances, BioFCs have, up to now, only found niche applications with low power needs, but they could become a green solution in the perspective of sustainable development and the circular economy. Ion exchange membranes for utilization in BioFCs are discussed in the final section of the review: they include perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion exchange groups.
Collapse
|
4
|
Effects of some phenolic compounds on the inhibition of α-glycosidase enzyme-immobilized on Pluronic®F127 micelles: An in vitro and in silico study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Use of PEDOT:PSS/Graphene/Nafion Composite in Biosensors Based on Acetic Acid Bacteria. BIOSENSORS-BASEL 2021; 11:bios11090332. [PMID: 34562922 PMCID: PMC8467571 DOI: 10.3390/bios11090332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023]
Abstract
Immobilization of the biocomponent is one of the most important stages in the development of microbial biosensors. In this study, we examined the electrochemical properties of a novel PEDOT:PSS/graphene/Nafion composite used to immobilize Gluconobacter oxydans bacterial cells on the surface of a graphite screen-printed electrode. Bioelectrode responses to glucose in the presence of a redox mediator 2,6-dichlorophenolindophenol were studied. The presence of graphene in the composite reduced the negative effect of PEDOT:PSS on cells and improved its conductivity. The use of Nafion enabled maintaining the activity of acetic acid bacteria at the original level for 120 days. The sensitivity of the bioelectrode based on G. oxydans/PEDOT:PSS/graphene/Nafion composite was shown to be 22 μA × mM−1 × cm−2 within the linear range of glucose concentrations. The developed composite can be used both in designing bioelectrochemical microbial devices and in biotechnology productions for long-term immobilization of microorganisms.
Collapse
|
6
|
Nyein HYY, Bariya M, Tran B, Ahn CH, Brown BJ, Ji W, Davis N, Javey A. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat Commun 2021; 12:1823. [PMID: 33758197 PMCID: PMC7987967 DOI: 10.1038/s41467-021-22109-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
The body naturally and continuously secretes sweat for thermoregulation during sedentary and routine activities at rates that can reflect underlying health conditions, including nerve damage, autonomic and metabolic disorders, and chronic stress. However, low secretion rates and evaporation pose challenges for collecting resting thermoregulatory sweat for non-invasive analysis of body physiology. Here we present wearable patches for continuous sweat monitoring at rest, using microfluidics to combat evaporation and enable selective monitoring of secretion rate. We integrate hydrophilic fillers for rapid sweat uptake into the sensing channel, reducing required sweat accumulation time towards real-time measurement. Along with sweat rate sensors, we integrate electrochemical sensors for pH, Cl-, and levodopa monitoring. We demonstrate patch functionality for dynamic sweat analysis related to routine activities, stress events, hypoglycemia-induced sweating, and Parkinson's disease. By enabling sweat analysis compatible with sedentary, routine, and daily activities, these patches enable continuous, autonomous monitoring of body physiology at rest.
Collapse
Affiliation(s)
- Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mallika Bariya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brandon Tran
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christine Heera Ahn
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Brenden Janatpour Brown
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Wenbo Ji
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Noelle Davis
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Lim K, Lee YS, Simoska O, Dong F, Sima M, Stewart RJ, Minteer SD. Rapid Entrapment of Phenazine Ethosulfate within a Polyelectrolyte Complex on Electrodes for Efficient NAD + Regeneration in Mediated NAD +-Dependent Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10942-10951. [PMID: 33646753 DOI: 10.1021/acsami.0c22302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Over the past two decades, the designs of redox polymers have become critical to the field of mediated bioelectrocatalysis and are used in commercial glucose biosensors, as well as other bioelectrochemical applications (e.g., energy harvesting). These polymers are specifically used to immobilize redox mediators on electrode surfaces, allowing for self-exchange-based conduction of electrons from enzymes far from the electrode to the electrode surface. However, the synthesis of redox polymers is challenging and results in large batch-to-batch variability. Herein, we report a rapid entrapment of mediators for NAD+-dependent bioelectrocatalysis within reverse ionically condensed polyelectrolytes. A high ionic strength aqueous solution of oppositely charged polyelectrolytes, composed of cationic polyguanidinium (PG) chloride and anionic sodium hexametaphosphate (P6), undergoes phase inversion into a solid microporous polyelectrolyte complex (PEC) when introduced into a low ionic strength aqueous solution. The ionic strength-triggered phase inversion of PGP6 solutions was investigated as a means to entrap mediators on the surface of electrodes for mediated bioelectrocatalysis. Compared to the traditional cross-linked immobilizations using redox polymers, this phase inversion takes place within seconds and requires up to 60 min for complete stabilization. In this work, redox mediator phenazine ethosulfate (PES) was entrapped within PGP6 on electrode surfaces for nicotinamide adenine dinucleotide (NAD+)-dependent bioelectrocatalysis. In the bulk solution, NAD+-dependent dehydrogenase enzymes catalyze the oxidation of the substrate while reducing NAD to reduced nicotinamide adenine dinucleotide (NADH). The resulting NADH is reoxidized to NAD+ by the entrapped PES that gets reduced on the electrode, completing the NAD+-regeneration-based bioelectrocatalysis. To show the use of these new materials in an application, biofuel cells were evaluated using four different anodic enzyme systems (alcohol dehydrogenase, lactate hydrogenase, glycerol dehydrogenase, and glucose dehydrogenase).
Collapse
Affiliation(s)
- Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Monika Sima
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Mani P, Fidal VT, Keshavarz T, Chandra TS, Kyazze G. Laccase Immobilization Strategies for Application as a Cathode Catalyst in Microbial Fuel Cells for Azo Dye Decolourization. Front Microbiol 2021; 11:620075. [PMID: 33537019 PMCID: PMC7847978 DOI: 10.3389/fmicb.2020.620075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 01/31/2023] Open
Abstract
Enzymatic biocathodes have the potential to replace platinum as an expensive catalyst for the oxygen reduction reaction in microbial fuel cells (MFCs). However, enzymes are fragile and prone to loss of activity with time. This could be circumvented by using suitable immobilization techniques to maintain the activity and increase longevity of the enzyme. In the present study, laccase from Trametes versicolor was immobilized using three different approaches, i.e., crosslinking with electropolymerized polyaniline (PANI), entrapment in copper alginate beads (Cu-Alg), and encapsulation in Nafion micelles (Nafion), in the absence of redox mediators. These laccase systems were employed in cathode chambers of MFCs for decolourization of Acid orange 7 (AO7) dye. The biocatalyst in the anode chamber was Shewanella oneidensis MR-1 in each case. The enzyme in the immobilized states was compared with freely suspended enzyme with respect to dye decolourization at the cathode, enzyme activity retention, power production, and reusability. PANI laccase showed the highest stability and activity, producing a power density of 38 ± 1.7 mW m−2 compared to 25.6 ± 2.1 mW m−2 for Nafion laccase, 14.7 ± 1.04 mW m−2 for Cu-Alg laccase, and 28 ± 0.98 mW m−2 for the freely suspended enzyme. There was 81% enzyme activity retained after 1 cycle (5 days) for PANI laccase compared to 69% for Nafion and 61.5% activity for Cu-alginate laccase and 23.8% activity retention for the freely suspended laccase compared to initial activity. The dye decolourization was highest for freely suspended enzyme with over 85% decolourization whereas for PANI it was 75.6%, Nafion 73%, and 81% Cu-alginate systems, respectively. All the immobilized laccase systems were reusable for two more cycles. The current study explores the potential of laccase immobilized biocathode for dye decolourization in a microbial fuel cell.
Collapse
Affiliation(s)
| | - V T Fidal
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Taj Keshavarz
- School of Life Sciences, University of Westminster, London, United Kingdom
| | - T S Chandra
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, India
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
9
|
Alshammari A, Posner MG, Upadhyay A, Marken F, Bagby S, Ilie A. A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21077-21088. [PMID: 27447357 DOI: 10.1021/acsami.6b05453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Developing generic strategies for building adaptable or multifunctional bioplatforms is challenging, in particular because protein immobilization onto surfaces often causes loss of protein function and because multifunctionality usually necessitates specific combinations of heterogeneous elements. Here, we introduce a generic, modular bioplatform construction strategy that uses cage-like supramolecular multienzyme complexes as highly adaptable building blocks immobilized directly and noncovalently on graphene. Thermoplasma acidophilum dihydrolipoyl acyltransferase (E2) supramolecular complexes organize as a monolayer or can be controllably transferred onto graphene, preserving their supramolecular form with specific molecular recognition capability and capacity for engineering multifunctionality. This E2-graphene platform can bind enzymes (here, E1, E2's physiological partner) without loss of enzyme function; in this test case, E1 catalytic activity was detected on E2-graphene over 6 orders of magnitude in substrate concentration. The E2-graphene platform can be multiplexed via patterned cotransfer of differently modified E2 complexes. As the E2 complexes are robust and highly customizable, E2-graphene is a platform onto which multiple functionalities can be built.
Collapse
Affiliation(s)
- Abeer Alshammari
- Department of Physics, King Saud University , Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
10
|
Mecheri B, De Porcellinis D, Campana PT, Rainer A, Trombetta M, Marletta A, Oliveira ON, Licoccia S. Tuning Structural Changes in Glucose Oxidase for Enzyme Fuel Cell Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28311-28318. [PMID: 26641699 DOI: 10.1021/acsami.5b08610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stabilization and electrical contacting of redox enzymes with electrodes are fundamental requirements for bioelectronics devices, including biosensors and enzyme fuel cells (EFCs). In this study, we show increased glucose oxidase (GOx) stability by immobilization with Nafion. The immobilization process affected GOx conformation but was not detrimental to its activity, which was maintained for more than 120 days. The GOx/Nafion system was interfaced to a carbon cloth electrode and assembled in a prototypal EFC fed with glucose. Polarization and power density curves demonstrated that GOx/Nafion system was able to generate power, exploiting a Nafion-assisted electron transfer process to the electrode. Our findings are consistent with the onset of pH-dependent conformational equilibrium for the enzyme secondary structure and its active site. Significantly, the protective effect exerted by Nafion on the enzyme structure may be tuned by varying parameters such as the pH to fabricate durable EFCs with good electrocatalytic performance.
Collapse
Affiliation(s)
- Barbara Mecheri
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Diana De Porcellinis
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Patricia T Campana
- School of Arts, Sciences and Humanities, University of São Paulo , Av. Arlindo Bettio, 1000, São Paulo CEP 03828-000, São Paulo, Brazil
| | - Alberto Rainer
- Università Campus Bio-Medico di Roma , Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Università Campus Bio-Medico di Roma , Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia , Avenida João Naves de Ávila, 2121, Uberlândia, CEP 38408-100, Minas Gerais, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo , CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Silvia Licoccia
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata" , Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|