1
|
Singh A, Mahesh A, Noack F, Cardoso de Toledo B, Calegari F, Tiwari VK. Tcf12 and NeuroD1 cooperatively drive neuronal migration during cortical development. Development 2022; 149:dev200250. [PMID: 35147187 PMCID: PMC8918803 DOI: 10.1242/dev.200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/06/2023]
Abstract
Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.
Collapse
Affiliation(s)
- Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Beatriz Cardoso de Toledo
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Morandell J, Schwarz LA, Basilico B, Tasciyan S, Dimchev G, Nicolas A, Sommer C, Kreuzinger C, Dotter CP, Knaus LS, Dobler Z, Cacci E, Schur FKM, Danzl JG, Novarino G. Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development. Nat Commun 2021; 12:3058. [PMID: 34031387 PMCID: PMC8144225 DOI: 10.1038/s41467-021-23123-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). Here, the authors show that Cul3 is essential to regulate neuronal migration by tightly regulating Plastin3 (Pls3). Pls3 cell-autonomously regulates cell migration by regulating the actin cytoskeleton organization.
Collapse
Affiliation(s)
- Jasmin Morandell
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Lena A Schwarz
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - Saren Tasciyan
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Georgi Dimchev
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Armel Nicolas
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | | | - Christoph P Dotter
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Lisa S Knaus
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Zoe Dobler
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Florian K M Schur
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
3
|
Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun 2020; 11:135. [PMID: 31919362 PMCID: PMC6952376 DOI: 10.1038/s41467-019-14026-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Functional plasticity of the brain decreases during ageing causing marked deficits in contextual learning, allocentric navigation and episodic memory. Adult neurogenesis is a prime example of hippocampal plasticity promoting the contextualisation of information and dramatically decreases during ageing. We found that a genetically-driven expansion of neural stem cells by overexpression of the cell cycle regulators Cdk4/cyclinD1 compensated the age-related decline in neurogenesis. This triggered an overall inhibitory effect on the trisynaptic hippocampal circuit resulting in a changed profile of CA1 sharp-wave ripples known to underlie memory consolidation. Most importantly, increased neurogenesis rescued the age-related switch from hippocampal to striatal learning strategies by rescuing allocentric navigation and contextual memory. Our study demonstrates that critical aspects of hippocampal function can be reversed in old age, or compensated throughout life, by exploiting the brain’s endogenous reserve of neural stem cells. Ageing affects several brain areas causing a decrease in cognitive abilities and memory. We find that increasing the endogenous potential of the hippocampus to generate new neurons throughout life rejuvenates learning and memory, indicating that neural reserves can be exploited during ageing to compensate for age- or disease-related cognitive impairments.
Collapse
|
4
|
Franz H, Villarreal A, Heidrich S, Videm P, Kilpert F, Mestres I, Calegari F, Backofen R, Manke T, Vogel T. DOT1L promotes progenitor proliferation and primes neuronal layer identity in the developing cerebral cortex. Nucleic Acids Res 2019; 47:168-183. [PMID: 30329130 PMCID: PMC6326801 DOI: 10.1093/nar/gky953] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.
Collapse
Affiliation(s)
- Henriette Franz
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Alejandro Villarreal
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Heidrich
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Fabian Kilpert
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ivan Mestres
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), School of Medicine, Technical University Dresden, 01307 Dresden, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.,Center for non-coding RNA in Technology and Health, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Thomas Manke
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Medical Faculty, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Bottai D, Spreafico M, Pistocchi A, Fazio G, Adami R, Grazioli P, Canu A, Bragato C, Rigamonti S, Parodi C, Cazzaniga G, Biondi A, Cotelli F, Selicorni A, Massa V. Modeling Cornelia de Lange syndrome in vitro and in vivo reveals a role for cohesin complex in neuronal survival and differentiation. Hum Mol Genet 2019; 28:64-73. [PMID: 30239720 DOI: 10.1093/hmg/ddy329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS), which is reported to affect ∼1 in 10 000 to 30 000 newborns, is a multisystem organ developmental disorder with relatively mild to severe effects. Among others, intellectual disability represents an important feature of this condition. CdLS can result from mutations in at least five genes: nipped-B-like protein, structural maintenance of chromosomes 1A, structural maintenance of chromosomes 3, RAD21 cohesin complex component and histone deacetylase 8 (HDAC8). It is believed that mutations in these genes cause CdLS by impairing the function of the cohesin complex (to which all the aforementioned genes contribute to the structure or function), disrupting gene regulation during critical stages of early development. Since intellectual disorder might result from alterations in neural development, in this work, we studied the role of Hdac8 gene in mouse neural stem cells (NSCs) and in vertebrate (Danio rerio) brain development by knockdown and chemical inhibition experiments. Underlying features of Hdac8 deficiency is an increased cell death in the developing neural tissues, either in mouse NSCs or in zebrafish embryos.
Collapse
Affiliation(s)
- Daniele Bottai
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Raffaella Adami
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Adriana Canu
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Bragato
- Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- PhD program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Silvia Rigamonti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Chiara Parodi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Cyclin-Dependent Kinase-Dependent Phosphorylation of Sox2 at Serine 39 Regulates Neurogenesis. Mol Cell Biol 2017; 37:MCB.00201-17. [PMID: 28584195 DOI: 10.1128/mcb.00201-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023] Open
Abstract
Sox2 is known to be important for neuron formation, but the precise mechanism through which it activates a neurogenic program and how this differs from its well-established function in self-renewal of stem cells remain elusive. In this study, we identified a highly conserved cyclin-dependent kinase (Cdk) phosphorylation site on serine 39 (S39) in Sox2. In neural stem cells (NSCs), phosphorylation of S39 enhances the ability of Sox2 to negatively regulate neuronal differentiation, while loss of phosphorylation is necessary for chromatin retention of a truncated form of Sox2 generated during neurogenesis. We further demonstrated that nonphosphorylated cleaved Sox2 specifically induces the expression of proneural genes and promotes neurogenic commitment in vivo Our present study sheds light on how the level of Cdk kinase activity directly regulates Sox2 to tip the balance between self-renewal and differentiation in NSCs.
Collapse
|
7
|
Mestres I, Chuang JZ, Calegari F, Conde C, Sung CH. SARA regulates neuronal migration during neocortical development through L1 trafficking. Development 2016; 143:3143-53. [PMID: 27471254 DOI: 10.1242/dev.129338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/17/2016] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that endocytic trafficking of adhesion proteins plays a crucial role in neuronal migration during neocortical development. However, molecular insights into these processes remain elusive. Here, we study the early endosomal protein Smad anchor for receptor activation (SARA) in the developing mouse brain. SARA is enriched at the apical endfeet of radial glia of the neocortex. Although SARA knockdown did not lead to detectable neurogenic phenotypes, SARA-suppressed neurons exhibited impaired orientation and migration across the intermediate zone. Mechanistically, we show that SARA knockdown neurons exhibit increased surface expression of the L1 cell adhesion molecule. Neurons ectopically expressing L1 phenocopy the migration and orientation defects caused by SARA knockdown and display increased contact with neighboring neurites. L1 knockdown effectively rescues SARA suppression-induced phenotypes. SARA knockdown neurons eventually overcome their migration defect and enter later into the cortical plate. Nevertheless, these neurons localize at more superficial cortical layers than their control counterparts. These results suggest that SARA regulates the orientation, multipolar-to-bipolar transition and the positioning of cortical neurons via modulating surface L1 expression.
Collapse
Affiliation(s)
- Iván Mestres
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Jen-Zen Chuang
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Fetscherstrasse 105, Dresden 01307, Germany
| | - Cecilia Conde
- INIMEC, Instituto de Investigación Médica Mercedes y Martín Ferreyra, CONICET, Universidad Nacional de Córdoba UNC, Friuli 2434-5016, Córdoba, Argentina Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Ching-Hwa Sung
- Department of Ophthalmology, Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA Departments of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
8
|
Nomura T, Nishimura Y, Gotoh H, Ono K. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation. Sci Rep 2016; 6:29817. [PMID: 27430903 PMCID: PMC4949460 DOI: 10.1038/srep29817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/26/2016] [Indexed: 01/29/2023] Open
Abstract
In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangicho, Sakyoku, Kyoto, 606-0823, Japan.,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yusuke Nishimura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangicho, Sakyoku, Kyoto, 606-0823, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangicho, Sakyoku, Kyoto, 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangicho, Sakyoku, Kyoto, 606-0823, Japan
| |
Collapse
|
9
|
de Jesus Domingues AM, Artegiani B, Dahl A, Calegari F. Identification of Tox chromatin binding properties and downstream targets by DamID-Seq. GENOMICS DATA 2016; 7:264-8. [PMID: 26981424 PMCID: PMC4778673 DOI: 10.1016/j.gdata.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/29/2023]
Abstract
In recent years, DNA adenine methyltransferase identification (DamID) has emerged as a powerful tool to profile protein-DNA interaction on a genome-wide scale. While DamID has been primarily combined with microarray analyses, which limits the spatial resolution and full potential of this technique, our group was the first to combine DamID with sequencing (DamID-Seq) for characterizing the binding loci and properties of a transcription factor (Tox) (sequencing data available at NCBI's Gene Expression Omnibus under the accession number GSE64240). Our approach was based on the combination and optimization of several bioinformatics tools that are here described in detail. Analysis of Tox proximity to transcriptional start sites, profiling on enhancers and binding motif has allowed us to identify this transcription factor as an important new regulator of neural stem cells differentiation and newborn neurons maturation during mouse cortical development. Here we provide a valuable resource to study the role of Tox as a novel key determinant of mammalian somatic stem cells during development of the nervous and lymphatic system, in which this factor is known to be active, and describe a useful pipeline to perform DamID-Seq analyses for any other transcription factor.
Collapse
Affiliation(s)
| | - Benedetta Artegiani
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, Faculty of Medicine, TU-Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group-SFB655, Biotechnology Center, TU-Dresden, Germany
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, Faculty of Medicine, TU-Dresden, Germany
| |
Collapse
|
10
|
Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, Tiwari VK. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 2015; 35:24-45. [PMID: 26516211 DOI: 10.15252/embj.201591206] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Johannes Jung
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Pawel Smialowski
- Adolf Butenandt Institute and Center for Integrated Protein Science, Ludwig Maximilian University, Munich, Germany
| | - Florian Noack
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Tobias Straub
- Adolf Butenandt Institute and Center for Integrated Protein Science, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
11
|
Artegiani B, de Jesus Domingues AM, Bragado Alonso S, Brandl E, Massalini S, Dahl A, Calegari F. Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO J 2014; 34:896-910. [PMID: 25527292 DOI: 10.15252/embj.201490061] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023] Open
Abstract
Major efforts are invested to characterize the factors controlling the proliferation of neural stem cells. During mammalian corticogenesis, our group has identified a small pool of genes that are transiently downregulated in the switch of neural stem cells to neurogenic division and reinduced in newborn neurons. Among these switch genes, we found Tox, a transcription factor with hitherto uncharacterized roles in the nervous system. Here, we investigated the role of Tox in corticogenesis by characterizing its expression at the tissue, cellular and temporal level. We found that Tox is regulated by calcineurin/Nfat signalling. Moreover, we combined DNA adenine methyltransferase identification (DamID) with deep sequencing to characterize the chromatin binding properties of Tox including its motif and downstream transcriptional targets including Sox2, Tbr2, Prox1 and other key factors. Finally, we manipulated Tox in the developing brain and validated its multiple roles in promoting neural stem cell proliferation and neurite outgrowth of newborn neurons. Our data provide a valuable resource to study the role of Tox in other tissues and highlight a novel key player in brain development.
Collapse
Affiliation(s)
- Benedetta Artegiani
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | | | - Sara Bragado Alonso
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Elisabeth Brandl
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Simone Massalini
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing Group-SFB655, Biotechnology Center, TU-Dresden, Dresden, Germany
| | - Federico Calegari
- DFG-Research Center for Regenerative Therapies, Cluster of Excellence, TU-Dresden, Dresden, Germany
| |
Collapse
|
12
|
Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol Ther 2014; 22:1460-1471. [PMID: 24814152 DOI: 10.1038/mt.2014.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Vector systems based on different retroviruses are widely used to achieve stable integration and expression of transgenes. More recently, transient genetic manipulation systems were developed that are based on integration- or reverse transcription-deficient retroviruses. Lack of viral genome integration is desirable not only for reducing tumorigenic potential but also for applications requiring transient transgene expression such as reprogramming or genome editing. However, all existing transient retroviral vector systems rely on virus-encoded encapsidation sequences for the transfer of heterologous genetic material. We discovered that the transient transgene expression observed in target cells transduced by reverse transcriptase-deficient foamy virus (FV) vectors is the consequence of subgenomic RNA encapsidation into FV particles. Based on this initial observation, we describe here the establishment of FV vectors that enable the efficient transient expression of various transgenes by packaging, transfer, and de novo translation of nonviral RNAs both in vitro and in vivo. Transient transgene expression levels were comparable to integrase-deficient vectors but, unlike the latter, declined to background levels within a few days. Our results show that this new FV vector system provides a useful, novel tool for efficient transient genetic manipulation of target tissues by transfer of nonviral RNAs.
Collapse
|
13
|
Aprea J, Prenninger S, Dori M, Ghosh T, Monasor LS, Wessendorf E, Zocher S, Massalini S, Alexopoulou D, Lesche M, Dahl A, Groszer M, Hiller M, Calegari F. Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO J 2013; 32:3145-60. [PMID: 24240175 DOI: 10.1038/emboj.2013.245] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.
Collapse
Affiliation(s)
- Julieta Aprea
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|