1
|
Srinivasan S, Kryza T, Bock N, Tse BWC, Sokolowski KA, Janaththani P, Fernando A, Moya L, Stephens C, Dong Y, Röhl J, Alinezhad S, Vela I, Perry-Keene JL, Buzacott K, Nica R, Gago-Dominguez M, Schleutker J, Maier C, Muir K, Tangen CM, Gronberg H, Pashayan N, Albanes D, Wolk A, Stanford JL, Berndt SI, Mucci LA, Koutros S, Cussenot O, Sorensen KD, Grindedal EM, Travis RC, Haiman CA, MacInnis RJ, Vega A, Wiklund F, Neal DE, Kogevinas M, Penney KL, Nordestgaard BG, Brenner H, John EM, Gamulin M, Claessens F, Melander O, Dahlin A, Stattin P, Hallmans G, Häggström C, Johansson R, Thysell E, Rönn AC, Li W, Brown N, Dimeski G, Shepherd B, Dadaev T, Brook MN, Spurdle AB, Stenman UH, Koistinen H, Kote-Jarai Z, Klein RJ, Lilja H, Ecker RC, Eeles R, Clements J, Batra J. A PSA SNP associates with cellular function and clinical outcome in men with prostate cancer. Nat Commun 2024; 15:9587. [PMID: 39505858 PMCID: PMC11541583 DOI: 10.1038/s41467-024-52472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Genetic variation at the 19q13.3 KLK locus is linked with prostate cancer susceptibility in men. The non-synonymous KLK3 single nucleotide polymorphism (SNP), rs17632542 (c.536 T > C; Ile163Thr-substitution in PSA) is associated with reduced prostate cancer risk, however, the functional relevance is unknown. Here, we identify that the SNP variant-induced change in PSA biochemical activity mediates prostate cancer pathogenesis. The 'Thr' PSA variant leads to small subcutaneous tumours, supporting reduced prostate cancer risk. However, 'Thr' PSA also displays higher metastatic potential with pronounced osteolytic activity in an experimental metastasis in-vivo model. Biochemical characterisation of this PSA variant demonstrates markedly reduced proteolytic activity that correlates with differences in in-vivo tumour burden. The SNP is associated with increased risk for aggressive disease and prostate cancer-specific mortality in three independent cohorts, highlighting its critical function in mediating metastasis. Carriers of this SNP allele have reduced serum total PSA and a higher free/total PSA ratio that could contribute to late biopsy decisions and delay in diagnosis. Our results provide a molecular explanation for the prominent 19q13.3 KLK locus, rs17632542 SNP, association with a spectrum of prostate cancer clinical outcomes.
Collapse
Affiliation(s)
- Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
- Centre for Genomic and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas Kryza
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Panchadsaram Janaththani
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
- Centre for Genomic and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Leire Moya
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Carson Stephens
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Ying Dong
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Faculty of Health Sciences and Medicine, Bond University, 14 University Drive, Robina, QLD, 4226, Australia
| | - Saeid Alinezhad
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Ian Vela
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, Woolloongabba, Brisbane, QLD, Australia
| | - Joanna L Perry-Keene
- Pathology Queensland, Sunshine Coast University Hospital Laboratory, Birtinya, Sunshine Coast, QLD, Australia
| | - Katie Buzacott
- Pathology Queensland, Sunshine Coast University Hospital Laboratory, Birtinya, Sunshine Coast, QLD, Australia
| | | | - Manuela Gago-Dominguez
- Health Research Institute of Santiago de Compostela (IDIS), Galicia Public Foundation IDIS, SERGAS, Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Santiago de Compostela, Spain
| | - Johanna Schleutker
- Institute of Biomedicine, Kiinamyllynkatu 10, FI-20014 University of Turku, Turku, Finland
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Christiane Maier
- Humangenetik Tuebingen, Paul-Ehrlich-Str 23, D-72076, Tuebingen, Germany
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, M13 9PL, UK
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Nora Pashayan
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge, CB1 8RN, UK
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, 177 77, Stockholm, Sweden
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Olivier Cussenot
- CeRePP, Tenon Hospital, F-75020, Paris, France
- Sorbonne Universite, GRC n°5, AP-HP, Tenon Hospital, 4 rue de la Chine, F-75020, Paris, France
| | - Karina Dalsgaard Sorensen
- Department of Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensen Boulevard 99, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, DK-8200, Aarhus N., Denmark
| | - Eli Marie Grindedal
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, 90015, USA
| | - Robert J MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, 15706, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, 15706, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, England
- University of Cambridge, Department of Oncology, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, CB2 0RE, UK
| | - Manolis Kogevinas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - Kathryn L Penney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Børge G Nordestgaard
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, 2200, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Marija Gamulin
- School of Medicine, University of Zagreb, Salata 3, 10 000, Zagreb, Croatia
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, BE-3000, Belgium
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Anders Dahlin
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Pär Stattin
- Institute of Environmental Medicine, Karolinska Institutet, 177 77, Stockholm, Sweden
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | | | | | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ann-Charlotte Rönn
- Translational Analysis in Molecular Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Weiqiang Li
- Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nigel Brown
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Goce Dimeski
- Department of Chemical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Benjamin Shepherd
- Department of Anatomical Pathology, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD, Australia
| | - Tokhir Dadaev
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Mark N Brook
- The Institute of Cancer Research, London, SM2 5NG, UK
| | - Amanda B Spurdle
- Molecular Cancer Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki, Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Robert J Klein
- Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hans Lilja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery (Urology Service) and Medicine (Genitourinary Oncology), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rupert C Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
- TissueGnostics GmbH, Vienna, Austria
| | - Rosalind Eeles
- The Institute of Cancer Research, London, SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland (QLD), Australia.
- Translational Research Institute, Queensland University of Technology, Woolloongabba, Brisbane, QLD, Australia.
- Centre for Genomic and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
4
|
Serrano A, Weber T, Berthelet J, El-Saafin F, Gadipally S, Charafe-Jauffret E, Ginestier C, Mariadason JM, Oakes SR, Britt K, Naik SH, Merino D. Experimental and spontaneous metastasis assays can result in divergence in clonal architecture. Commun Biol 2023; 6:821. [PMID: 37550477 PMCID: PMC10406815 DOI: 10.1038/s42003-023-05167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Intratumoural heterogeneity is associated with poor outcomes in breast cancer. To understand how malignant clones survive and grow in metastatic niches, in vivo models using cell lines and patient-derived xenografts (PDX) have become the gold standard. Injections of cancer cells in orthotopic sites (spontaneous metastasis assays) or into the vasculature (experimental metastasis assays) have been used interchangeably to study the metastatic cascade from early events or post-intravasation, respectively. However, less is known about how these different routes of injection impact heterogeneity. Herein we directly compared the clonality of spontaneous and experimental metastatic assays using the human cell line MDA-MB-231 and a PDX model. Genetic barcoding was used to study the fitness of the subclones in primary and metastatic sites. Using spontaneous assays, we found that intraductal injections resulted in less diverse tumours compared to other routes of injections. Using experimental metastasis assays via tail vein injection of barcoded MDA-MB-231 cells, we also observed an asymmetry in metastatic heterogeneity between lung and liver that was not observed using spontaneous metastasis assays. These results demonstrate that these assays can result in divergent clonal outputs in terms of metastatic heterogeneity and provide a better understanding of the biases inherent to each technique.
Collapse
Affiliation(s)
- Antonin Serrano
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tom Weber
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jean Berthelet
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Farrah El-Saafin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Sreeja Gadipally
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe labellisée LIGUE contre le cancer, Marseille, 13009, France
| | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille University, Epithelial Stem Cells and Cancer Laboratory, Equipe labellisée LIGUE contre le cancer, Marseille, 13009, France
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Samantha R Oakes
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, 2010, Australia
| | - Kara Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Shalin H Naik
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
5
|
Camara Serrano JA. Ultrasound Guided Surgery as a Refinement Tool in Oncology Research. Animals (Basel) 2022; 12:ani12233445. [PMID: 36496966 PMCID: PMC9739685 DOI: 10.3390/ani12233445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Refinement is one of the ethical pillars of the use of animals in research. Ultrasonography is currently used in human medicine as a surgical tool for guided biopsies and this idea can be applied to preclinical research thanks to the development of specific instruments. This will eliminate the necessity of a surgical opening for implanting cells in specific organs or taking samples from tissues. The approach for the injection will depend on the target but most of the case is going to be lateral, with the probe in a ventral position and the needle going into from the lateral. This is the situation for the thyroid gland, heart, liver, spleen, kidney, pancreas, uterus, and testicles. Other approaches, such as the dorsal, can be used in the spleen or kidney. The maximum injected volume will depend on the size of the structure. For biopsies, the technical protocol is similar to the injection knowing that in big organs such as the liver, spleen, or kidney we can take several samples moving slightly the needle inside the structure. In all cases, animals must be anesthetized and minimum pain management is required after the intervention.
Collapse
|
6
|
Liu HJ, Wang M, Shi S, Hu X, Xu P. A Therapeutic Sheep in Metastatic Wolf's Clothing: Trojan Horse Approach for Cancer Brain Metastases Treatment. NANO-MICRO LETTERS 2022; 14:114. [PMID: 35482117 PMCID: PMC9050993 DOI: 10.1007/s40820-022-00861-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Early-stage brain metastasis of breast cancer (BMBC), due to the existence of an intact blood-brain barrier (BBB), is one of the deadliest neurologic complications. To improve the efficacy of chemotherapy for BMBC, a Trojan horse strategy-based nanocarrier has been developed by integrating the cell membrane of a brain-homing cancer cell and a polymeric drug depot. With the camouflage of a MDA-MB-231/Br cell membrane, doxorubicin-loaded poly (D, L-lactic-co-glycolic acid) nanoparticle (DOX-PLGA@CM) shows enhanced cellular uptake and boosted killing potency for MDA-MB-231/Br cells. Furthermore, DOX-PLGA@CM is equipped with naturally selected molecules for BBB penetration, as evidenced by its boosted capacity in entering the brain of both healthy and early-stage BMBC mouse models. Consequently, DOX-PLGA@CM effectively reaches the metastatic tumor lesions in the brain, slows down cancer progression, reduces tumor burden, and extends the survival time for the BMBC animal. Furthermore, the simplicity and easy scale-up of the design opens a new window for the treatment of BMBC and other brain metastatic cancers.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
7
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
8
|
Tse BWC, Kryza T, Yeh MC, Dong Y, Sokolowski KA, Walpole C, Dreyer T, Felber J, Harris J, Magdolen V, Russell PJ, Clements JA. KLK4 Induces Anti-Tumor Effects in Human Xenograft Mouse Models of Orthotopic and Metastatic Prostate Cancer. Cancers (Basel) 2020; 12:cancers12123501. [PMID: 33255452 PMCID: PMC7761350 DOI: 10.3390/cancers12123501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The serine protease kallikrein-related peptidase 4 (KLK4) has been reported to potentially play a role in the progression of prostate cancer and other cancer types. However, most of these reports have been limited to in vitro studies. In vivo cancer models offer greater complexity to mimic the characteristics of cancer growth and metastasis in humans. In this study, we used in vivo models of prostate cancer and demonstrated that KLK4 can strongly inhibit the growth of primary prostate tumors as well as bone metastases. To our knowledge, this is the first report of an anti-tumor effect of KLK4 in prostate cancer in vivo. Abstract Recent reports have suggested the role of kallikrein-related peptidase 4 (KLK4) to be that of remodeling the tumor microenvironment in many cancers, including prostate cancer. Notably, these studies have suggested a pro-tumorigenic role for KLK4, especially in prostate cancer. However, these have been primarily in vitro studies, with limited in vivo studies performed to date. Herein, we employed an orthotopic inoculation xenograft model to mimic the growth of primary tumors, and an intracardiac injection to induce metastatic dissemination to determine the in vivo tumorigenic effects of KLK4 overexpressed in PC3 prostate cancer cells. Notably, we found that these KLK4-expressing cells gave rise to smaller localized tumors and decreased metastases than the parent PC-3 cells. To our knowledge, this is the first report of an anti-tumorigenic effect of KLK4, particularly in prostate cancer. These findings also provide a cautionary tale of the need for in vivo analyses to substantiate in vitro experimental data.
Collapse
Affiliation(s)
- Brian W.-C. Tse
- Preclinical Imaging Facility, Translational Research Institute, Brisbane 4102, Australia;
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Correspondence:
| | - Thomas Kryza
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane 4102, Australia
| | - Mei-Chun Yeh
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Ying Dong
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Kamil A. Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, Brisbane 4102, Australia;
| | - Carina Walpole
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
- Translational Research Institute, Mater Research Institute—The University of Queensland, Brisbane 4102, Australia
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Johanna Felber
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Jonathan Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675 Munich, Germany; (T.D.); (J.F.); (V.M.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre—Queensland, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane 4102, Australia; (T.K.); (M.-C.Y.); (Y.D.); (C.W.); (P.J.R.); (J.A.C.)
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4102, Australia;
| |
Collapse
|
9
|
Crowe W, Wang L, Zhang Z, Varagic J, Bourland JD, Chan MD, Habib AA, Zhao D. MRI evaluation of the effects of whole brain radiotherapy on breast cancer brain metastasis. Int J Radiat Biol 2019; 95:338-346. [PMID: 30499763 DOI: 10.1080/09553002.2019.1554920] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To assess early changes in brain metastasis in response to whole brain radiotherapy (WBRT) by longitudinal Magnetic Resonance Imaging (MRI). MATERIALS AND METHODS Using a 7T system, MRI examinations of brain metastases in a breast cancer MDA-MD231-Br mouse model were conducted before and 24 hours after 3 daily fractionations of 4 Gy WBRT. Besides anatomic MRI, diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI were applied to study cytotoxic effect and blood-tumor-barrier (BTB) permeability change, respectively. RESULTS Before treatment, high-resolution T2-weighted images revealed hyperintense multifocal lesions, many of which (∼50%) were not enhanced on T1-weighted contrast images, indicating intact BTB in the brain metastases. While no difference in the number of new lesions was observed, WBRT-treated tumors were significantly smaller than sham controls (p < .05). DW MRI detected significant increase in apparent diffusion coefficient (ADC) in WBRT tumors (p < .05), which correlated with elevated caspase 3 staining of apoptotic cells. Many lesions remained non-enhanced post WBRT. However, quantitative DCE MRI analysis showed significantly higher permeability parameter, Ktrans, in WBRT than the sham group (p < .05), despite marked spatial heterogeneity. CONCLUSIONS MRI allowed non-invasive assessments of WBRT induced changes in BTB permeability, which may provide useful information for potential combination treatment.
Collapse
Affiliation(s)
- William Crowe
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Lulu Wang
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Zhongwei Zhang
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Jasmina Varagic
- b Department of Surgery , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - J Daniel Bourland
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA.,c Department of Radiation Oncology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Michael D Chan
- c Department of Radiation Oncology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Amyn A Habib
- d Department of Neurology and Neurotherapeutics , University of Texas Southwestern Medical Center and VA North Texas Medical Center , Dallas , TX , USA
| | - Dawen Zhao
- a Department of Biomedical Engineering , Wake Forest School of Medicine , Winston-Salem , NC , USA.,e Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
10
|
Turner TH, Alzubi MA, Sohal SS, Olex AL, Dozmorov MG, Harrell JC. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer. Breast Cancer Res Treat 2018. [PMID: 29532339 DOI: 10.1007/s10549-018-4748-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Basal-like breast cancers are aggressive and often metastasize to vital organs. Treatment is largely limited to chemotherapy. This study aims to characterize the efficacy of cancer therapeutics in vitro and in vivo within the primary tumor and metastatic setting, using patient-derived xenograft (PDX) models. METHODS We employed two basal-like, triple-negative PDX models, WHIM2 and WHIM30. PDX cells, obtained from mammary tumors grown in mice, were treated with twelve cancer therapeutics to evaluate their cytotoxicity in vitro. Four of the effective drugs-carboplatin, cyclophosphamide, bortezomib, and dacarbazine-were tested in vivo for their efficacy in treating mammary tumors, and metastases generated by intracardiac injection of tumor cells. RESULTS RNA sequencing showed that global gene expression of PDX cells grown in the mammary gland was similar to those tested in culture. In vitro, carboplatin was cytotoxic to WHIM30 but not WHIM2, whereas bortezomib, dacarbazine, and cyclophosphamide were cytotoxic to both lines. Yet, these drugs were ineffective in treating both primary and metastatic WHIM2 tumors in vivo. Carboplatin and cyclophosphamide were effective in treating WHIM30 mammary tumors and reducing metastatic burden in the brain, liver, and lungs. WHIM2 and WHIM30 metastases showed distinct patterns of cytokeratin and vimentin expression, regardless of treatment, suggesting that different tumor cell subpopulations may preferentially seed in different organs. CONCLUSIONS This study highlights the utility of PDX models for studying the efficacy of therapeutics in reducing metastatic burden in specific organs. The differential treatment responses between two PDX models of the same intrinsic subtype, in both the primary and metastatic setting, recapitulates the challenges faced in treating cancer patients and highlights the need for combination therapies and predictive biomarkers.
Collapse
Affiliation(s)
- Tia H Turner
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammad A Alzubi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA.,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Sahib S Sohal
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Amy L Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, 23298, USA. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
11
|
Abstract
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas.
Collapse
Affiliation(s)
- Erica T Goddard
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University
| | - Jacob Fischer
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University;
| |
Collapse
|