1
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Aghabi D, Sloan M, Gill G, Hartmann E, Antipova O, Dou Z, Guerra AJ, Carruthers VB, Harding CR. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun 2023; 14:3659. [PMID: 37339985 PMCID: PMC10281983 DOI: 10.1038/s41467-023-39436-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.
Collapse
Affiliation(s)
- Dana Aghabi
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan Sloan
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Grace Gill
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Elena Hartmann
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Olga Antipova
- X-Ray Sciences Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alfredo J Guerra
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Cayman Chemical Company, Ann Arbor, MI, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Clare R Harding
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
3
|
Slepchenko KG, Chen S, Corbin KL, Colvin RA, Nunemaker CS. The use of synchrotron X-ray fluorescent imaging to study distribution and content of elements in chemically fixed single cells: a case study using mouse pancreatic beta-cells. Metallomics 2023; 15:mfad006. [PMID: 36737500 PMCID: PMC9933206 DOI: 10.1093/mtomcs/mfad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Synchrotron X-ray fluorescence microscopy (SXRF) presents a valuable opportunity to study the metallome of single cells because it simultaneously provides high-resolution subcellular distribution and quantitative cellular content of multiple elements. Different sample preparation techniques have been used to preserve cells for observations with SXRF, with a goal to maintain fidelity of the cellular metallome. In this case study, mouse pancreatic beta-cells have been preserved with optimized chemical fixation. We show that cell-to-cell variability is normal in the metallome of beta-cells due to heterogeneity and should be considered when interpreting SXRF data. In addition, we determined the impact of several immunofluorescence (IF) protocols on metal distribution and quantification in chemically fixed beta-cells and found that the metallome of beta-cells was not well preserved for quantitative analysis. However, zinc and iron qualitative analysis could be performed after IF with certain limitations. To help minimize metal loss using samples that require IF, we describe a novel IF protocol that can be used with chemically fixed cells after the completion of SXRF.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
4
|
Slepchenko KG, Chen S, Counts GP, Corbin KL, Colvin RA, Nunemaker CS. Synchrotron fluorescence imaging of individual mouse beta-cells reveals changes in zinc, calcium, and iron in a model of low-grade inflammation. Metallomics 2021; 13:6353533. [PMID: 34402906 DOI: 10.1093/mtomcs/mfab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic beta-cells synthesize and secrete insulin maintaining an organism's energy homeostasis. In humans, beta-cell dysfunction and death contribute to the pathogenesis of type 2 diabetes (T2D). Although the causes of beta-cell dysfunction are complex, obesity-induced low-grade systemic inflammation plays a role. For example, obese individuals exhibiting increased levels of proinflammatory cytokines IL-6 and IL-1beta have a higher risk of beta-cell dysfunction and T2D. Interestingly, obesity-induced inflammation changes the expression of several cellular metal regulating genes, prompting this study to examine changes in the beta-cell metallome after exposure to proinflammatory-cytokines. Primary mouse beta-cells were exposed to a combination of IL-6 and IL-1beta for 48 hours, were chemically fixed and imaged by synchrotron X-ray fluorescent microscopy. Quantitative analysis showed a surprising 2.4-fold decrease in the mean total cellular content of zinc from 158 ± 57.7 femtograms (fg) to 65.7 ± 29.7 fg; calcium decreased from 216 ± 67.4 to 154.3 ± 68.7 fg (control vs. cytokines, respectively). The mean total cellular iron content slightly increased from 30.4 ± 12.2 to 47.2 ± 36.4 fg after cytokine treatment; a sub-population of cells (38%) exhibited larger increases of iron density. Changes in the subcellular distributions of zinc and calcium were observed after cytokine exposure. Beta-cells contained numerous iron puncta that accumulated still more iron after exposure to cytokines. These findings provide evidence that exposure to low levels of cytokines is sufficient to cause changes in the total cellular content and/or subcellular distribution of several metals known to be critical for normal beta-cell function.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA.,Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Grace P Counts
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA.,Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA
| | - Craig S Nunemaker
- Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
5
|
Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Res 2018; 28:48-55. [PMID: 29427839 DOI: 10.1016/j.scr.2018.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 12/04/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
Differentiation of human pluripotent stem cells towards definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency.
Collapse
|
6
|
Jones MWM, Hare DJ, James SA, de Jonge MD, McColl G. Radiation Dose Limits for Bioanalytical X-ray Fluorescence Microscopy. Anal Chem 2017; 89:12168-12175. [DOI: 10.1021/acs.analchem.7b02817] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Michael W. M. Jones
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria 3168, Australia
- ARC
Centre of Excellence in Advanced Molecular Imaging, La Trobe Intitute
of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Dominic J. Hare
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Simon A. James
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Martin D. de Jonge
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, Victoria 3168, Australia
| | - Gawain McColl
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Jin Q, Paunesku T, Lai B, Gleber SC, Chen SI, Finney L, Vine D, Vogt S, Woloschak G, Jacobsen C. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy. J Microsc 2016; 265:81-93. [PMID: 27580164 PMCID: PMC5217071 DOI: 10.1111/jmi.12466] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023]
Abstract
Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.
Collapse
Affiliation(s)
- Qiaoling Jin
- Department of Physics & Astronomy, Weinberg College of Arts and Sciences, Evanston, Illinois, U.S.A
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois, U.S.A
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| | | | - S I Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| | - Lydia Finney
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| | - David Vine
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois, U.S.A
| | - Chris Jacobsen
- Department of Physics & Astronomy, Weinberg College of Arts and Sciences, Evanston, Illinois, U.S.A.,Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, U.S.A
| |
Collapse
|