1
|
Lyth S, Betancourt AJ, Price TAR, Verspoor RL. The suppression of a selfish genetic element increases a male's mating success in a fly. Ecol Evol 2023; 13:e10719. [PMID: 37964789 PMCID: PMC10641306 DOI: 10.1002/ece3.10719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
X chromosome meiotic drive (XCMD) kills Y-bearing sperm during spermatogenesis, leading to the biased transmission of the selfish X chromosome. Despite this strong transmission, some natural XCMD systems remain at low and stable frequencies, rather than rapidly spreading through populations. The reason may be that male carriers can have reduced fitness, as they lose half of their sperm, only produce daughters, and may carry deleterious alleles associated with XCMD. Thus, females may benefit from avoiding mating with male carriers, yielding a further reduction in fitness. Genetic suppressors of XCMD, which block the killing of Y sperm and restore fair Mendelian inheritance, are also common and could prevent the spread of XCMD. However, whether suppressed males are as fit as a wild-type male remains an open question, as the effect that genetic suppressors may have on a male's mating success is rarely considered. Here, we investigate the mating ability of XCMD males and suppressed XCMD males in comparison to wild-type males in the fruit fly Drosophila subobscura, where drive remains at a stable frequency of 20% in wild populations where it occurs. We use both competitive and non-competitive mating trials to evaluate male mating success in this system. We found no evidence that unsuppressed XCMD males were discriminated against. Remarkably, however, their suppressed XCMD counterparts had a higher male mating success compared to wild-type controls. Unsuppressed XCMD males suffered 12% lower offspring production in comparison to wild-type males. This cost appears too weak to counter the transmission advantage of XCMD, and thus the factors preventing the spread of XCMD remain unclear.
Collapse
Affiliation(s)
- Sophie Lyth
- Institute of InfectionVeterinary and Ecological Sciences, University of LiverpoolLiverpoolUK
| | - Andrea J. Betancourt
- Institute of InfectionVeterinary and Ecological Sciences, University of LiverpoolLiverpoolUK
| | - Tom A. R. Price
- Institute of InfectionVeterinary and Ecological Sciences, University of LiverpoolLiverpoolUK
| | - Rudi L. Verspoor
- Institute of InfectionVeterinary and Ecological Sciences, University of LiverpoolLiverpoolUK
- Institute of SystemsMolecular, and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
2
|
Heys C, Lizé A, Blow F, White L, Darby A, Lewis ZJ. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host-microbiota studies. Ecol Evol 2018; 8:4150-4161. [PMID: 29721287 PMCID: PMC5916298 DOI: 10.1002/ece3.3991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, there has been a surge in interest in the effects of the microbiota on the host. Increasingly, we are coming to understand the importance of the gut microbiota in modulating host physiology, ecology, behavior, and evolution. One method utilized to evaluate the effect of the microbiota is to suppress or eliminate it, and compare the effect on the host with that of untreated individuals. In this study, we evaluate some of these commonly used methods in the model organism, Drosophila melanogaster. We test the efficacy of a low‐dose streptomycin diet, egg dechorionation, and an axenic or sterile diet, in the removal of gut bacteria within this species in a fully factorial design. We further determine potential side effects of these methods on host physiology by performing a series of standard physiological assays. Our results showed that individuals from all treatments took significantly longer to develop, and weighed less, compared to normal flies. Males and females that had undergone egg dechorionation weighed significantly less than streptomycin reared individuals. Similarly, axenic female flies, but not males, were much less active when analyzed in a locomotion assay. All methods decreased the egg to adult survival, with egg dechorionation inducing significantly higher mortality. We conclude that low‐dose streptomycin added to the dietary media is more effective at removing the gut bacteria than egg dechorionation and has somewhat less detrimental effects to host physiology. More importantly, this method is the most practical and reliable for use in behavioral research. Our study raises the important issue that the efficacy of and impacts on the host of these methods require investigation in a case‐by‐case manner, rather than assuming homogeneity across species and laboratories.
Collapse
Affiliation(s)
- Chloe Heys
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Anne Lizé
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK.,UMR 6553 ECOBIO University of Rennes Rennes France
| | - Frances Blow
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Lewis White
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Alistair Darby
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Zenobia J Lewis
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
3
|
Colpo AC, Lima ME, da Rosa HS, Leal AP, Colares CC, Zago AC, Salgueiro ACF, Bertelli PR, Minetto L, Moura S, Mendez ASL, Folmer V. Ilex paraguariensis extracts extend the lifespan of Drosophila melanogaster fed a high-fat diet. ACTA ACUST UNITED AC 2017; 51:e6784. [PMID: 29211252 PMCID: PMC5711008 DOI: 10.1590/1414-431x20176784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Studies have suggested that total energy intake and diet composition affect lifespan and ageing. A high-fat diet induces oxidative stress and affects the development of diseases. In contrast, antioxidants are capable of reducing its harmful effects. Yerba mate beverages are an important source of antioxidants, but there is scarce knowledge about their effects on suppressing fat accumulation. Here, we investigated the compounds present in yerba mate extracts and assessed their effects on Drosophila melanogaster given a high cholesterol diet. LS-ESI-MS analysis showed the presence of matesaponins, phenolic compounds and methylxanthines in all of the examined extracts. In Drosophila, under extract treatment conditions, the mean lifespan was significantly extended from 38 to 43 days, there was an increase in the ability to support induced stress and decrease in lipid peroxidation products. Moreover, yerba mate extracts recovered the glutathione S-transferases (GST) activity and reduced the cholesterol level. Taken together, our results support that extracts can extend lifespan by reducing the detrimental effect of a high-fat diet in D. melanogaster, and this outcome can be associated with the compound content in the extracts. This study improves the understanding of natural interventions that reduce stress-induced oxidative damage, which is fundamental in promoting healthy ageing.
Collapse
Affiliation(s)
- A C Colpo
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil.,Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - M E Lima
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - H S da Rosa
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - A P Leal
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - C C Colares
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - A C Zago
- Laboratório Escola de Análises Clínicas, Curso de Farmácia, Universidade da Região da Campanha, Bagé, RS, Brasil
| | - A C F Salgueiro
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - P R Bertelli
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Minetto
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil
| | - S Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS, Brasil
| | - A S L Mendez
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - V Folmer
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| |
Collapse
|
4
|
Llavero Hurtado M, Fuller HR, Wong AMS, Eaton SL, Gillingwater TH, Pennetta G, Cooper JD, Wishart TM. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep 2017; 7:12412. [PMID: 28963550 PMCID: PMC5622084 DOI: 10.1038/s41598-017-12603-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3−/− mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3−/− mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.
Collapse
Affiliation(s)
- Maica Llavero Hurtado
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heidi R Fuller
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, Keele, ST5 5BG, UK
| | - Andrew M S Wong
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Samantha L Eaton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK.,Los Angeles Biomedical Research Institute, and David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, 90502, USA
| | - Thomas M Wishart
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|