1
|
Wu SY, Hung YC, Chou CC, Chen C, Cheng CM, Chen C, Liou JC, Hsu MY. Isolation of three different sizes of exosomes in an Asian population with different retinal diseases before and after treatment: preliminary results. Bioengineered 2024; 15:2297320. [PMID: 38155415 PMCID: PMC10761085 DOI: 10.1080/21655979.2023.2297320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2023] [Indexed: 12/30/2023] Open
Abstract
Exosomes are membranous structures measuring between 40-120 nm that are secreted by various cells of the human body into the body fluid system. Exosomes contain proteins, mRNA, miRNA, and signaling molecules, and physiologically they assist in the intercellular transport of proteins and RNA molecules. In this study, we used an immunoaffinity filter paper platform combined with scanning electron microscopy and microfluidic systems to detect the size of exosomes within the aqueous humor. Eight aqueous humor samples showed three distinct sizes of exosomes that were significantly different on scanning electron microscopy(P < 0.01). We further used nanoparticle tracking analysis to assess the size distribution of exosomes within the aqueous humor. We found significantly different distributions of exosomes between patients with three different ocular diseases and patients with normal cataracts as controls. An obvious peak of exomeres(size around 35 nm)was found in the patients with central retinal vein occlusion and vitreous hemorrhage. Flare-ups of large exosomes(size 90-120 nm)were found in the patients with the inflammatory ocular disease pars planitis. No obvious peaks in exomeres or large exosomes were found in the control group. There was a high association between the distribution of exosomes and the pathogenesis of ocular diseases. After intravitreal anti-vascular endothelial growth factor treatment, the aqueous humor from the patients with neovascular diseases showed a significant reduction in exosomes in nanoparticle tracking analysis. These findings suggest that at least three distinct sizes of exosomes exist in the aqueous humor:(1)exomeres:<35 nm;(2)small exosomes:60-80 nm; and (3)large exosomes:90-120 nm. Different sizes of exosomes may have different implications in normal or diseased eyes.
Collapse
Affiliation(s)
- Sung-Yu Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chien Hung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Chih Chou
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Connie Chen
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jyh-Cheng Liou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Yen Hsu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Sun Z, Zhang B, Tu H, Pan C, Chai Y, Chen W. Advances in colorimetric biosensors of exosomes: novel approaches based on natural enzymes and nanozymes. NANOSCALE 2024; 16:1005-1024. [PMID: 38117141 DOI: 10.1039/d3nr05459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Exosomes are 30-150 nm vesicles derived from diverse cell types, serving as one of the most important biomarkers for early diagnosis and prognosis of diseases. However, the conventional detection method for exosomes faces significant challenges, such as unsatisfactory sensitivity, complicated operation, and the requirement of complicated devices. In recent years, colorimetric exosome biosensors with a visual readout underwent rapid development due to the advances in natural enzyme-based assays and the integration of various types of nanozymes. These synthetic nanomaterials show unique physiochemical properties and catalytic abilities, enabling the construction of exosome colorimetric biosensors with novel principles. This review will illustrate the reaction mechanisms and properties of natural enzymes and nanozymes, followed by a detailed introduction of the recent advances in both types of enzyme-based colorimetric biosensors. A comparison between natural enzymes and nanozymes is made to provide insights into the research that improves the sensitivity and convenience of assays. Finally, the advantages, challenges, and future directions of enzymes as well as exosome colorimetric biosensors are highlighted, aiming at improving the overall performance from different approaches.
Collapse
Affiliation(s)
- Zhonghao Sun
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Binmao Zhang
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Hangjia Tu
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Chuye Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Yujuan Chai
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| | - Wenwen Chen
- Department of Biomedical Engineering, Shenzhen University Medicine School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Zhu Y. Plasma/Serum Proteomics based on Mass Spectrometry. Protein Pept Lett 2024; 31:192-208. [PMID: 38869039 PMCID: PMC11165715 DOI: 10.2174/0109298665286952240212053723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 06/14/2024]
Abstract
Human blood is a window of physiology and disease. Examination of biomarkers in blood is a common clinical procedure, which can be informative in diagnosis and prognosis of diseases, and in evaluating treatment effectiveness. There is still a huge demand on new blood biomarkers and assays for precision medicine nowadays, therefore plasma/serum proteomics has attracted increasing attention in recent years. How to effectively proceed with the biomarker discovery and clinical diagnostic assay development is a question raised to researchers who are interested in this area. In this review, we comprehensively introduce the background and advancement of technologies for blood proteomics, with a focus on mass spectrometry (MS). Analyzing existing blood biomarkers and newly-built diagnostic assays based on MS can shed light on developing new biomarkers and analytical methods. We summarize various protein analytes in plasma/serum which include total proteome, protein post-translational modifications, and extracellular vesicles, focusing on their corresponding sample preparation methods for MS analysis. We propose screening multiple protein analytes in the same set of blood samples in order to increase success rate for biomarker discovery. We also review the trends of MS techniques for blood tests including sample preparation automation, and further provide our perspectives on their future directions.
Collapse
Affiliation(s)
- Yiying Zhu
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Onukwugha NE, Kang YT, Nagrath S. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation. LAB ON A CHIP 2022; 22:3314-3339. [PMID: 35980234 PMCID: PMC9474625 DOI: 10.1039/d2lc00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Extracellular vesicles (EVs) have been hypothesized to incorporate a variety of crucial roles ranging from intercellular communication to tumor pathogenesis to cancer immunotherapy capabilities. Traditional EV isolation and characterization techniques cannot accurately and with specificity isolate subgroups of EVs, such as tumor-derived extracellular vesicles (TEVs) and immune-cell derived EVs, and are plagued with burdensome steps. To address these pivotal issues, multiplex microfluidic EV isolation/characterization and on-chip EV engineering may be imperative towards developing the next-generation EV-based immunotherapeutics. Henceforth, our aim is to expound the state of the art in EV isolation/characterization techniques and their limitations. Additionally, we seek to elucidate current work on total analytical system based technologies for simultaneous isolation and characterization and to summarize the immunogenic capabilities of EV subgroups, both innate and adaptive. In this review, we discuss recent state-of-art microfluidic/micro-nanotechnology based EV screening methods and EV engineering methods towards therapeutic use of EVs in immune-oncology. By venturing in this field of EV screening and immunotherapies, it is envisioned that transition into clinical settings can become less convoluted for clinicians.
Collapse
Affiliation(s)
- Nna-Emeka Onukwugha
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Yoon-Tae Kang
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerface Institute, University of Michigan, 2800 Plymouth Road, NCRC B10-A184, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Zhang L, Yin W, Tong Y, Zhang Y, Xu Y, Liu SY, Dai Z, Zou X. Highly Efficient Isolation and Sensitive Detection of Small Extracellular Vesicles Using a Paper-Based Device. Anal Chem 2022; 94:10991-10999. [PMID: 35749725 DOI: 10.1021/acs.analchem.2c01378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Small extracellular vesicles (sEVs) play important roles in mediating intercellular communication and regulating biological processes. Facile sEV isolation is the essential and preliminary issue for their function investigation and downstream biomedical applications, while the traditional methods are challenged by tedious procedures, low purity, low yield, and potential damage. In this work, we developed an sEV isolation paper-based device (sEV-IsoPD) based on a three-dimensional (3D) paper chip, which is composed of a porous membrane for size exclusion and a metal-organic framework (MOF)/antibody-modified paper for immunoaffinity capture. In combination with a peristaltic pump-driven flow system, the sEV-IsoPD can efficiently isolate EV from cell culture medium and serum. Compared with the ultracentrifugation method, sEV-IsoPD exhibited a 5.1 times higher yield (1.7 × 109 mL-1), 1.6 times higher purity (1.6 × 1011 mg-1), and 7.5 times higher recovery (77.3%) with only 8.3% of the time (30 min) and 1.0% of the instrument cost ($710). Moreover, sEV concentration can be visually detected in a quantitative manner with this paper-based device with a linear range from 3.0 × 106 to 3.0 × 1010 mL-1 and a detection limit of 2.2 × 106 mL-1. The sEV-IsoPD provides an efficient and practical approach for the rapid isolation and visible detection of sEVs, which are promising for the preparation of sEVs and diagnosis of disease.
Collapse
Affiliation(s)
- Lang Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.,Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal Bioanal Chem 2022; 414:7051-7067. [PMID: 35732746 DOI: 10.1007/s00216-022-04178-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022]
Abstract
Extracellular vesicles (EVs) are transport vesicles with diameters ranging from 30 to 1000 nm, secreted by cells in both physiological and pathological conditions. By using the EV shuttling system, biomolecular cargo such as proteins and genetic materials travels between cells resulting in intercellular communication and epigenetic regulation. Because the presence of EVs and cargo molecules in body fluids can predict the state of the parental cells, EV isolation techniques from complex biofluids have been developed. Further exploration of EVs through downstream molecular analysis depends heavily on those isolation technologies. Methodologies based either on physical separation or on affinity binding have been used to isolate EVs. Affinity-based methods for EV isolation are known to produce highly specific and efficient isolation results. However, so far, there is a lack of literature summarizing these methods and their effects on downstream EV molecular analysis. In the present work, we reviewed recent efforts on developing affinity-based methods for the isolation of EVs, with an emphasis on comparing their effects on downstream analysis of EV molecular cargo. Antibody-based isolation techniques produce highly pure EVs, but the harsh eluents damage the EV structure, and some antibodies stay bound to the EVs after elution. Aptamer-based methods use relatively mild elution conditions and release EVs in their native form, but their isolation efficiencies need to be improved. The membrane affinity-based method and other affinity-based methods based on the properties of the EV lipid bilayer also isolate intact EVs, but they can also result in contaminants. From the perspective of affinity-based methods, we investigated the influence of the isolation methods of choice on downstream EV molecular analysis.
Collapse
|
7
|
Chen QY, Wen T, Wu P, Jia R, Zhang R, Dang J. Exosomal Proteins and miRNAs as Mediators of Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:718803. [PMID: 34568332 PMCID: PMC8461026 DOI: 10.3389/fcell.2021.718803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the neurobiology and neurogenerative diseases have attracted growing interest in exosomes and their ability to carry and propagate active biomolecules as a means to reprogram recipient cells. Alterations in exosomal protein content and nucleic acid profiles found in human biological fluids have been correlated with various diseases including amyotrophic lateral sclerosis (ALS). In ALS pathogenesis, these lipid-bound nanoscale vesicles have emerged as valuable candidates for diagnostic biomarkers. Moreover, their capacity to spread misfolded proteins and functional non-coding RNAs to interconnected neuronal cells make them putative mediators for the progressive motor degeneration found remarkably apparent in ALS. This review outlines current knowledge concerning the biogenesis, heterogeneity, and function of exosomes in the brain as well as a comprehensive probe of currently available literature on ALS-related exosomal proteins and microRNAs. Lastly, with the rapid development of employing nanoparticles for drug delivery, we explore the therapeutic potentials of exosomes as well as underlying limitations in current isolation and detection methodologies.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Rui Jia
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ronghua Zhang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingxia Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Yonet-Tanyeri N, Ahlmark BZ, Little SR. Advances in Multiplexed Paper-Based Analytical Devices for Cancer Diagnosis: A Review of Technological Developments. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001138. [PMID: 34447879 PMCID: PMC8384263 DOI: 10.1002/admt.202001138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/14/2023]
Abstract
Cancer is one of the leading causes of death worldwide producing estimated cost of $161.2 billion in the US in 2017 only. Early detection of cancer would not only reduce cancer mortality rates but also dramatically reduce healthcare costs given that the 17 million new cancer cases in 2018 are estimated to grow 27.5 million new cases by 2040. Analytical devices based upon paper substrates could provide effective, rapid, and extremely low cost alternatives for early cancer detection compared to existing testing methods. However, low concentrations of biomarkers in body fluids as well as the possible association of any given biomarker with multiple diseases remain as one of the greatest challenges to widespread adoption of these paper-based devices. However, recent advances have opened the possibility of detecting multiple biomarkers within the same device, which could be predictive of a patient's condition with unprecedented cost-effectiveness. Accordingly, this review highlights the recent advancements in paper-based analytical devices with a multiplexing focus. The primary areas of interest include lateral flow assay and microfluidic paper-based assay formats, signal amplification approaches to enhance the sensitivity for a specific cancer type, along with current challenges and future outlook for the detection of multiple cancer biomarkers.
Collapse
Affiliation(s)
- Nihan Yonet-Tanyeri
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Z Ahlmark
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021; 16:1548-1580. [PMID: 33495626 DOI: 10.1038/s41596-020-00466-1] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
Collapse
|
11
|
Poellmann MJ, Nair A, Bu J, Kim JKH, Kimple RJ, Hong S. Immunoavidity-Based Capture of Tumor Exosomes Using Poly(amidoamine) Dendrimer Surfaces. NANO LETTERS 2020; 20:5686-5692. [PMID: 32407121 DOI: 10.1021/acs.nanolett.0c00950] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tumor-derived blood-circulating exosomes have potential as a biomarker to greatly improve cancer treatment. However, effective isolation of exosomes remains a tremendous technical challenge. This study presents a novel nanostructured polymer surface for highly effective capture of exosomes through strong avidity. Various surface configurations, consisting of multivalent dendrimers, PEG, and tumor-targeting antibodies, were tested using exosomes isolated from tumor cell lines. We found that a dual layer dendrimer configuration exhibited the highest efficiency in capturing cultured exosomes spiked into human serum. Importantly, the optimized surface captured a > 4-fold greater amount of tumor exosomes from head and neck cancer patient plasma samples than that from healthy donors. Nanomechanical analysis using atomic force microscopy also revealed that the enhancement was attributed to multivalent binding (avidity) and augmented short-range adhesion mediated by dendrimers. Our results support that the dendrimer surface detects tumor exosomes at high sensitivity and specificity, demonstrating its potential as a new cancer liquid biopsy platform.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ashita Nair
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jack K H Kim
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Korea 03722
| |
Collapse
|
12
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Lee J, Kim H, Heo Y, Yoo YK, Han SI, Kim C, Hur D, Kim H, Kang JY, Lee JH. Enhanced paper-based ELISA for simultaneous EVs/exosome isolation and detection using streptavidin agarose-based immobilization. Analyst 2020; 145:157-164. [PMID: 31723951 DOI: 10.1039/c9an01140d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
EVs/exosomes are considered as the next generation of biomarkers, including for liquid biopsies. Consequently, the quantification of EVs/exosomes is crucial for facilitating EV/exosome research and applications. Paper-based enzyme-linked immunosorbent assay (p-ELISA) is a portable diagnostic system with low cost that is simple and easy to use; however, it shows low sensitivity and linearity. In this study, we develop p-ELISA for targeting EVs/exosomes by using streptavidin agarose resin-based immobilization (SARBI). This method reduces assay preparation times, provides strong binding, and retains good sensitivity and linearity. The time required for the total assay, including preparation steps and surface immobilization, was shortened to ∼2 h. We evaluated SARBI p-ELISA systems with/without CD63 capture Ab and then with fetal bovine serum (FBS) and EVs/exosome-depleted fetal bovine serum (dFBS). The results provide evidence supporting the selective capture ability of SARBI p-ELISA. We obtain semiquantitative p-ELISA results using an exosome standard (ES) and human serum (HS), with R2 values of 0.95 and 0.92, respectively.
Collapse
Affiliation(s)
- Junwoo Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pang B, Zhu Y, Ni J, Thompson J, Malouf D, Bucci J, Graham P, Li Y. Extracellular vesicles: the next generation of biomarkers for liquid biopsy-based prostate cancer diagnosis. Theranostics 2020; 10:2309-2326. [PMID: 32089744 PMCID: PMC7019149 DOI: 10.7150/thno.39486] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of cancer death for males in western countries. The current gold standard for PCa diagnosis - template needle biopsies - often does not convey a true representation of the molecular profile given sampling error and complex tumour heterogeneity. Presently available biomarker blood tests have limited accuracy. There is a growing demand for novel diagnostic approaches to reduce both the number of men with an abnormal PSA/ DRE who undergo invasive biopsy and the number of cores collected per biopsy. 'Liquid biopsy' is a minimally invasive biofluid-based approach that has the potential to provide information and improve the accuracy of diagnosis for patients' treatment selection, prognostic counselling and development of risk-adjusted follow-up protocols. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by tumour cells which may provide a real-time snapshot of the entire tumour in a non-invasive way. EVs can regulate physiological processes and mediate systemic dissemination of various types of cancers. Emerging evidence suggests that EVs have crucial roles in PCa development and metastasis. Most importantly, EVs are directly derived from their parent cells with their information. EVs contain components including proteins, mRNAs, DNA fragments, non-coding RNAs and lipids, and play a critical role in intercellular communication. Therefore, EVs hold promise for the discovery of liquid biopsy-based biomarkers for PCa diagnosis. Here, we review the current approaches for EV isolation and analysis, summarise the recent advances in EV protein biomarkers in PCa and focus on liquid biopsy-based EV biomarkers in PCa diagnosis for personalised medicine.
Collapse
Affiliation(s)
- Bairen Pang
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Ying Zhu
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - James Thompson
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
- Garvan Institute of Medical Research/ APCRC, Sydney, UNSW, 2010, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- Department of Urology, St George Hospital, Sydney, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Care Centre, St. George Hospital, Sydney, NSW 2217, Australia
- School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| |
Collapse
|
15
|
Advances in exosomes technology. Clin Chim Acta 2019; 493:14-19. [DOI: 10.1016/j.cca.2019.02.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022]
|
16
|
A Simple Imaging Device for Fluorescence-Relevant Applications. MICROMACHINES 2018; 9:mi9080418. [PMID: 30424351 PMCID: PMC6211139 DOI: 10.3390/mi9080418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
Abstract
This article unveiled the development of an inexpensive, lightweight, easy-to-use, and portable fluorescence imaging device for paper-based analytical applications. We used commercial fluorescent dyes, as proof of concept, to verify the feasibility of our fluorescence imaging device for bioanalysis. This approach may provide an alternative method for nucleotide detection and semen analysis, using a miniaturized fluorescence reader that is more compact and portable than conventional analytical equipment.
Collapse
|
17
|
Pulikkathodi AK, Sarangadharan I, Lo CY, Chen PH, Chen CC, Wang YL. Miniaturized Biomedical Sensors for Enumeration of Extracellular Vesicles. Int J Mol Sci 2018; 19:ijms19082213. [PMID: 30060613 PMCID: PMC6121478 DOI: 10.3390/ijms19082213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
In this research, we have realized a rapid extracellular vesicle (EV) quantification methodology using a high field modulated AlGaN/GaN high electron mobility (HEMT) biosensor. The unique sensing structure facilitated the detection of the sub-cellular components in physiological salt environment without requiring extensive sample pre-treatments. The high field operation of GaN HEMT biosensor provides high sensitivity and wide dynamic range of detection of EVs (10⁷⁻1010 EVs/mL). An antibody specific to the known surface marker on the EV was used to capture them for quantification using an HEMT biosensor. Fluorescence microscopy images confirm the successful capture of EVs from the test solution. The present method can detect EVs in high ionic strength solution, with a short sample incubation period of 5 min, and does not require labels or additional reagents or wash/block steps. This methodology has the potential to be used in clinical applications for rapid EV quantification from blood or serum for the development of diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Anil Kumar Pulikkathodi
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Indu Sarangadharan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Chiao-Yun Lo
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Po-Hsuan Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Chih-Chen Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Yu-Lin Wang
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
18
|
Paper-Based Microfluidic Platforms for Understanding the Role of Exosomes in the Pathogenesis of Major Blindness-Threatening Diseases. NANOMATERIALS 2018; 8:nano8050310. [PMID: 29738436 PMCID: PMC5977324 DOI: 10.3390/nano8050310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/28/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Emerging roles of exosomes in the pathogenesis of major blindness-threatening diseases, such as age-related macular degeneration, glaucoma, and corneal dystrophy, were discovered by aqueous humor analysis. A new diagnostic method using cellulose-based devices and microfluidic chip techniques for the isolation of exosomes from aqueous humor is less cumbersome and saves time. This method will enable more investigations for aqueous humor analysis in the future.
Collapse
|
19
|
Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8545347. [PMID: 29662902 PMCID: PMC5831698 DOI: 10.1155/2018/8545347] [Citation(s) in RCA: 808] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. SCOPE OF REVIEW This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. MAJOR CONCLUSIONS A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. GENERAL SIGNIFICANCE With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine.
Collapse
Affiliation(s)
- Maria Yu. Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Evgeniy A. Lekchnov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| | - Alexander V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk 630055, Russia
| |
Collapse
|
20
|
Goetzl L, Merabova N, Darbinian N, Martirosyan D, Poletto E, Fugarolas K, Menkiti O. Diagnostic Potential of Neural Exosome Cargo as Biomarkers for Acute Brain Injury. Ann Clin Transl Neurol 2018; 5:4-10. [PMID: 29376087 PMCID: PMC5771318 DOI: 10.1002/acn3.499] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Neuronal exosomes purified from peripheral blood samples have been proposed as diagnostic tool in the setting of acute brain injury but never tested clinically. We hypothesized that exosome protein biomarkers would change over time following acute hypoxic brain injury and would predict response to therapy. Methods Synaptopodin (SYNPO), an actin-associated protein present in postsynaptic spines, was evaluated as a potential biomarker as well as: synaptophysin, neuron-specific enolase, and mitochondrial cytochrome c oxidase. A secondary analysis was performed on neonatal samples collected at 8, 10, and 14 h after the initiation of therapeutic-controlled hypothermia for acute hypoxic-ischemic encephalopathy (n = 14). Neuronal exosomes were purified from serum and protein levels were quantified using standard ELISA methods. The primary study outcomes were length of stay (LOS), discharge on seizure medication (DCMED), and composite neuroimaging score (NIS). Results The slope of change in neuronal exosome SYNPO between 8 and 14 h appeared to be the most promising biomarker for all three clinical study outcomes. SYNPO was highly correlated with LOS (-0.91, P < 0.001). SYNPO increased in 6/8 without DCMED and was worse or neutral in 5/5 with DCMED (P = 0.02). All four neonates with an abnormal NIS had neutral or decreasing SYNPO (P = 0.055). Other candidate biomarkers were not associated with outcomes. Interpretation This report provides the first clinical evidence that neural exosomes turn over rapidly enough in the peripheral circulation to be used as a "troponin-like" test following acute brain injury. Optimal sampling and biomarkers likely vary with type of brain injury.
Collapse
Affiliation(s)
- Laura Goetzl
- Departments of Obstetrics & GynecologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvania
| | - Nana Merabova
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Nune Darbinian
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Diana Martirosyan
- Shriner's Hospital Pediatric Research Center for Neural Repair and RehabilitationPhiladelphiaPennsylvania
| | - Erica Poletto
- Department of RadiologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| | - Keri Fugarolas
- Departments of NeonatologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| | - Ogechukwu Menkiti
- Departments of NeonatologyDrexel University School of MedicineSt. Christopher's Hospital for ChildrenPhiladelphiaPennsylvania
| |
Collapse
|
21
|
Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M, Cernuda-Morollón E, Paschen A, Valés-Gómez M, Blanco-López MC. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles 2016; 5:31803. [PMID: 27527605 PMCID: PMC4985618 DOI: 10.3402/jev.v5.31803] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.
Collapse
Affiliation(s)
| | - Sheila López-Cobo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, Spain
| | - Hugh T Reyburn
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, Spain
| | - Agustín Costa-García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería Oviedo, Spain
| | - Soraya López-Martín
- Unidad de Investigación, Hospital St Cristina, Instituto de Investigación Sanitaria Princesa (IS-IP), Madrid, Spain
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital St Cristina, Instituto de Investigación Sanitaria Princesa (IS-IP), Madrid, Spain.,Departamento de Biología Molecular, UAM/IIS-IP, Madrid, Spain
| | - Eva Cernuda-Morollón
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mar Valés-Gómez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Madrid, Spain
| | | |
Collapse
|
22
|
Jose AM. Movement of regulatory RNA between animal cells. Genesis 2015; 53:395-416. [PMID: 26138457 PMCID: PMC4915348 DOI: 10.1002/dvg.22871] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions.
Collapse
Affiliation(s)
- Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|