1
|
Corbacho J, Sanabria-Reinoso E, Buono L, Fernández-Miñan A, Martínez-Morales JR. Trap-TRAP, a Versatile Tool for Tissue-Specific Translatomics in Zebrafish. Front Cell Dev Biol 2022; 9:817191. [PMID: 35174174 PMCID: PMC8841413 DOI: 10.3389/fcell.2021.817191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental and physiological processes depend on the transcriptional and translational activity of heterogeneous cell populations. A main challenge in gene expression studies is dealing with this intrinsic complexity while keeping sequencing efficiency. Translating ribosome affinity purification (TRAP) methods have allowed cell-specific recovery of polyribosome-associated RNAs by genetic tagging of ribosomes in selected cell populations. Here we combined the TRAP approach with adapted enhancer trap methods (trap-TRAP) to systematically generate zebrafish transgenic lines suitable for tissue-specific translatome interrogation. Through the random integration of a GFP-tagged version of the large subunit ribosomal protein L10a (EGFP-Rpl10a), we have generated stable lines driving expression in a variety of tissues, including the retina, skeletal muscle, lateral line primordia, rhombomeres, or jaws. To increase the range of applications, a UAS:TRAP transgenic line compatible with available Gal4 lines was also generated and tested. The resulting collection of lines and applications constitutes a resource for the zebrafish community in developmental genetics, organ physiology and disease modelling.
Collapse
|
2
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Zheng HS, Huang CCJ. Isolate Cell-Type-Specific RNAs from Snap-Frozen Heterogeneous Tissue Samples without Cell Sorting. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2021:10.3791/63143. [PMID: 34958080 PMCID: PMC9940369 DOI: 10.3791/63143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cellular heterogeneity poses challenges to understanding the function of complex tissues at a transcriptome level. Using cell-type-specific RNAs avoids potential pitfalls caused by the heterogeneity of tissues and unleashes the powerful transcriptome analysis. The protocol described here demonstrates how to use the Translating Ribosome Affinity Purification (TRAP) method to isolate ribosome-bound RNAs from a small amount of EGFP-expressing cells in a complex tissue without cell sorting. This protocol is suitable for isolating cell-type-specific RNAs using the recently available NuTRAP mouse model and could also be used to isolate RNAs from any EGFP-expressing cells.
Collapse
Affiliation(s)
- Huifei Sophia Zheng
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University;
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University
| |
Collapse
|
4
|
Bertin B, Renaud Y, Jagla T, Lavergne G, Dondi C, Da Ponte JP, Junion G, Jagla K. Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Sci Rep 2021; 11:13197. [PMID: 34162956 PMCID: PMC8222376 DOI: 10.1038/s41598-021-92506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
A combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.
Collapse
Affiliation(s)
- Benjamin Bertin
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Yoan Renaud
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Teresa Jagla
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Guillaume Lavergne
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Cristiana Dondi
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Philippe Da Ponte
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Guillaume Junion
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Han X, Burger LL, Garcia-Galiano D, Moenter SM, Myers MG, Olson DP, Elias CF. Protocol to extract actively translated mRNAs from mouse hypothalamus by translating ribosome affinity purification. STAR Protoc 2021; 2:100589. [PMID: 34159322 PMCID: PMC8196219 DOI: 10.1016/j.xpro.2021.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we present an in-depth protocol for extracting ribosome-bound mRNAs in low-abundance cells of hypothalamic nuclei. mRNAs are extracted from the micropunched tissue using refined translating ribosome affinity purification. Isolated RNAs can be used for sequencing or transcript quantification. This protocol enables the identification of actively translated mRNAs in varying physiological states and can be modified for use in any neuronal subpopulation labeled with a ribo-tag. We use leptin receptor-expressing neurons as an example to illustrate the protocol. For complete details on the use and execution of this protocol, please refer to Han et al. (2020).
Collapse
Affiliation(s)
- Xingfa Han
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Isotope Research Lab, Sichuan Agricultural University, Ya’an 625014, China
| | - Laura L. Burger
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Garcia-Galiano
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M. Moenter
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin G. Myers
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - David P. Olson
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol F. Elias
- Department of Molecular & integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Pallos J, Jeng S, McWeeney S, Martin I. Dopamine neuron-specific LRRK2 G2019S effects on gene expression revealed by translatome profiling. Neurobiol Dis 2021; 155:105390. [PMID: 33984508 DOI: 10.1016/j.nbd.2021.105390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of late-onset Parkinson's disease. The pathogenic G2019S mutation enhances LRRK2 kinase activity and induces neurodegeneration in C. elegans, Drosophila and rodent models through unclear mechanisms. Gene expression profiling has the potential to provide detailed insight into the biological pathways modulated by LRRK2 kinase activity. Prior in vivo studies have surveyed the effects of LRRK2 G2019S on genome-wide mRNA expression in complex brain tissues with high cellular heterogeneity, limiting their power to detect more restricted gene expression changes occurring in a cell type-specific manner. Here, we used translating ribosome affinity purification (TRAP) coupled to RNA-seq to profile dopamine neuron-specific gene expression changes caused by LRRK2 G2019S in the Drosophila CNS. A number of genes were differentially expressed in the presence of mutant LRRK2 that represent a broad range of molecular functions including DNA repair (RfC3), mRNA metabolism and translation (Ddx1 and lin-28), calcium homeostasis (MCU), and other categories (Ugt37c1, disp, l(1)G0196, CG6602, CG1126 and CG11068). Further analysis on a subset of these genes revealed that LRRK2 G2019S did not alter their expression across the whole brain, consistent with dopamine neuron-specific effects uncovered by the TRAP approach that may yield insight into the neurodegenerative process. To our knowledge, this is the first study to profile the effects of LRRK2 G2019S specifically on DA neuron gene expression in vivo. Beyond providing a set of differentially expressed gene candidates relevant to LRRK2, we demonstrate the effective use of TRAP to perform high-resolution assessment of dopamine neuron gene expression for the study of PD.
Collapse
Affiliation(s)
- Judit Pallos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Shannon McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239, USA; Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Immarigeon C, Frei Y, Delbare SYN, Gligorov D, Machado Almeida P, Grey J, Fabbro L, Nagoshi E, Billeter JC, Wolfner MF, Karch F, Maeda RK. Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proc Natl Acad Sci U S A 2021; 118:e2001897118. [PMID: 33876742 PMCID: PMC8053986 DOI: 10.1073/pnas.2001897118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Yohan Frei
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Dragan Gligorov
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jasmine Grey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Léa Fabbro
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - François Karch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| |
Collapse
|
8
|
Basnet H, Massague J. Labeling and Isolation of Fluorouracil Tagged RNA by Cytosine Deaminase Expression. Bio Protoc 2019; 9:e3433. [PMID: 33654929 PMCID: PMC7854007 DOI: 10.21769/bioprotoc.3433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/19/2023] Open
Abstract
Tissues are comprised of different cell types whose interactions elicit distinct gene expression patterns that regulate tissue formation, regeneration, homeostasis and repair. Analysis of these gene expression patterns require methods that can capture as closely as possible the transcriptomes of cells of interest in their tissue microenvironment. Current technologies designed to study in situ transcriptomics are limited by their low sensitivity that require cell types to represent more than 1% of the total tissue, making it challenging to transcriptionally profile rare cell populations rapidly isolated from their native microenvironment. To address this problem, we developed fluorouracil-tagged RNA sequencing (Flura-seq) that utilizes cytosine deaminase (CD) to convert the non-natural pyrimidine fluorocytosine to fluorouracil. Expression of S. cerevisiae CD and exposure to fluorocytosine generates fluorouracil and metabolically labels newly synthesized RNAs specifically in cells of interest. Fluorouracil-tagged RNAs can then be immunopurified and used for downstream analysis. Here, we describe the detailed protocol to perform Flura-seq both in vitro and in vivo. The robustness, simplicity and lack of toxicity of Flura-seq make this tool broadly applicable to many studies in developmental, regenerative, and cancer biology.
Collapse
Affiliation(s)
- Harihar Basnet
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joan Massague
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
9
|
Basnet H, Tian L, Ganesh K, Huang YH, Macalinao DG, Brogi E, Finley LWS, Massagué J. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife 2019; 8:e43627. [PMID: 30912515 PMCID: PMC6440742 DOI: 10.7554/elife.43627] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Metastasis-initiating cells dynamically adapt to the distinct microenvironments of different organs, but these early adaptations are poorly understood due to the limited sensitivity of in situ transcriptomics. We developed fluorouracil-labeled RNA sequencing (Flura-seq) for in situ analysis with high sensitivity. Flura-seq utilizes cytosine deaminase (CD) to convert fluorocytosine to fluorouracil, metabolically labeling nascent RNA in rare cell populations in situ for purification and sequencing. Flura-seq revealed hundreds of unique, dynamic organ-specific gene signatures depending on the microenvironment in mouse xenograft breast cancer micrometastases. Specifically, the mitochondrial electron transport Complex I, oxidative stress and counteracting antioxidant programs were induced in pulmonary micrometastases, compared to mammary tumors or brain micrometastases. We confirmed lung metastasis-specific increase in oxidative stress and upregulation of antioxidants in clinical samples, thus validating Flura-seq's utility in identifying clinically actionable microenvironmental adaptations in early metastasis. The sensitivity, robustness and economy of Flura-seq are broadly applicable beyond cancer research.
Collapse
Affiliation(s)
- Harihar Basnet
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lin Tian
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Karuna Ganesh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of MedicineSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Danilo G Macalinao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Edi Brogi
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Lydia WS Finley
- Cell Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|