1
|
Erb C, Topouzis F, Jayaram H, Allan F, Nisslé S, Muñoz-Negrete FJ, Stalmans I. Preclinical and Clinical Pharmacokinetics of a New Preservative-Free Bimatoprost 0.01% Ophthalmic Gel to Treat Glaucoma and Ocular Hypertension. J Ocul Pharmacol Ther 2024. [PMID: 39509178 DOI: 10.1089/jop.2024.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Purpose: Pharmacokinetic evaluation of ocular penetration and systemic accumulation of preservative-free bimatoprost 0.01% ophthalmic gel (PFB 0.01% gel). Methods: In a preclinical study, pigmented rabbits received a single ocular administration of PFB 0.01% gel (N = 15) or preserved bimatoprost 0.01% or 0.03% ophthalmic solution [PB 0.01% (N = 15) or PB 0.03% (N = 15)]. The aqueous humor, iris, and ciliary body were analyzed for bimatoprost+bimatoprost free acid. In a Phase 1, randomized, open-label clinical study, healthy participants received PFB 0.01% gel (N = 20) or PB 0.01% (N = 20) daily in each eye (Days 1-15). Bimatoprost levels in human plasma were analyzed on Days 1 and 15. All serological analyses used validated methods. Adverse events were collected throughout and ocular assessments were performed on Days 1 and 15. Results: In the preclinical study, Cmax (bimatoprost+bimatoprost free acid) for PFB 0.01% gel, PB 0.01%, and PB 0.03% was 50.2, 26.3, and 59.9 ng/mL; AUC0.5-8 h was 134.0 ng·h/mL, 67.0 ng·h/mL, and 148.0 ng·h/mL. In the clinical study, systemic exposure to bimatoprost (AUC0-last) on Days 1 and 15 was lower for PFB 0.01% gel (0.5248 and 0.5645 ng·min/mL) than PB 0.01% (0.8461 and 0.7551 ng·min/mL), with no systemic accumulation of bimatoprost in either group. There were no clinically important differences between groups in ocular or systemic tolerability in the clinical study and no serious adverse events. Conclusions: PFB 0.01% gel showed improved ocular penetration compared with PB 0.01%. Systemic absorption was comparable, with a favorable clinical safety profile, supporting PFB 0.01% gel as a potential treatment for glaucoma and ocular hypertension.
Collapse
Affiliation(s)
- Carl Erb
- Eye Clinic Wittenbergplatz, Berlin, Germany
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hari Jayaram
- Glaucoma Service, Moorfields Eye Hospital, London, United Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | - Francisco J Muñoz-Negrete
- Department of Ophthalmology, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | - Ingeborg Stalmans
- Department of Ophthalmology, University Hospitals UZ Leuven, Leuven, Belgium
- Research Group of Ophthalmology, Catholic University KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Fu Y, Zhang Z, Webster KA, Paulus YM. Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization. Biomolecules 2024; 14:252. [PMID: 38540673 PMCID: PMC10968528 DOI: 10.3390/biom14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 05/04/2024] Open
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
Affiliation(s)
- Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
| | - Keith A. Webster
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Venkatesh S, Richardson M. Pharmacokinetic and Ocular Toxicity Evaluation of Latanoprost Ophthalmic Solution, 0.005%, with Preservative Level Reduced to Below the Limit of Quantitation. J Ocul Pharmacol Ther 2023; 39:622-630. [PMID: 37582270 DOI: 10.1089/jop.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Purpose: The systemic and ocular pharmacokinetics (PK), and ocular toxicity of benzalkonium chloride (BAK)-free TearClear latanoprost ophthalmic solution, 0.005% formulation (TC-002) were evaluated. TC-002 is designed to selectively capture BAK at the time of drug administration; therefore, the dose delivered to the eye contains no quantifiable level of preservative. Methods: The systemic and ocular PK of TC-002 were compared to a BAK containing reference listed drug (RLD, Xalatan™) over a 24-h period, after a single topical ocular dose to 1 eye of male Dutch Belted (DB) rabbits (n = 3/timepoint). Latanoprost acid concentrations were measured in plasma and ocular tissues. The ocular toxicity was evaluated in a separate study and included toxicokinetic evaluation of TC-002 after once daily topical ocular dosing into each eye of DB rabbits (n = 8/group) for at least 28 days. Toxicity endpoints included ophthalmic and clinical evaluations, necropsy, and microscopic evaluation of ocular tissues. Results: Average ratios of Cmax values for TC-002/RLD ranged from 0.6 to 1.6, and Cmax and area under the concentration-time curve of last observed concentration (AUClast) exposures to latanoprost acid were similar (<2-fold) between the 2 treatments. In the 28-day study, the Tmax was achieved in both groups in <0.5 h. There were no abnormal ocular findings. Conclusions: TC-002 with no quantifiable preservative or BAK-containing RLD exhibited similar ocular and systemic PK profiles. TC-002 was well tolerated and comparable to RLD. TC-002 retains the safety and PK characteristics of RLD without the added concern of long-term exposure of the eye to preservatives.
Collapse
|
4
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
5
|
Gogoi NR, Marbaniang D, Pal P, Ray S, Mazumder B. Targeted Nanotherapies for the Posterior Segment of the Eye: An Integrative Review on Recent Advancements and Challenges. Pharm Nanotechnol 2022; 10:268-278. [PMID: 35946098 DOI: 10.2174/2211738510666220806102612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
The eye is a one-of-a-kind sensory organ with intricate anatomy and physiology. It is protected by a variety of barriers, ranging from static barriers to dynamic barriers. Although these barriers are very effective at protecting the eye from exogenous substances and external stress, they are highly compromised by various vision-impairing diseases of both the anterior and the posterior segment of the eye. Due to ocular elimination systems and intricate obstacles that selectively limit drug entry into the eye, effective drug delivery to the posterior segment of the eye (PSE) continues to be a challenge in ophthalmology. Since more than half of the most debilitating eye illnesses are thought to originate in the posterior segment (PS), understanding the physiology and clearance mechanism of the eye could help design improved formulations that could be noninvasive and intended for targeted posterior segment therapeutics. Moreover, the major drawback associated with the conventional drug delivery system to PSE is minimal therapeutic drug concentration in the desired ocular tissue and life-threatening ophthalmic complications. One possible approach that can be implemented to overcome these ocular barriers for efficient ocular therapy, non-invasive and targeted drug action to the posterior tissues is by designing nanomedicines. This review summarizes the recent non-invasive and patient compliant advances in designing nanomedicines targeting PSE. The various routes and pathways of drug administration to the ocular tissue are also summarized.
Collapse
Affiliation(s)
- Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Daphisha Marbaniang
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Subhabrata Ray
- Department of Pharmaceutical Sciences, Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
6
|
García-Otero X, Mondelo-García C, Bandín-Vilar E, Gómez-Lado N, Silva-Rodríguez J, Rey-Bretal D, Victoria Otero-Espinar M, Adan A, González-Barcia M, Aguiar P, Otero-Espinar FJ, Fernández-Ferreiro A. PET study of intravitreal adalimumab pharmacokinetics in a uveitis rat model. Int J Pharm 2022; 627:122261. [DOI: 10.1016/j.ijpharm.2022.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
7
|
Torrens I, Ganza Á, Hernández G, Gonzalo A, Zazpe A. Ocular Biodistribution of Once-Daily 0.6% Bilastine Eye Drops Reveals Highest Levels in Conjunctiva Up to 24 h Postadministration. J Ocul Pharmacol Ther 2022; 38:617-625. [PMID: 36269652 DOI: 10.1089/jop.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Bilastine is a second-generation antihistamine that has been shown to be effective for treatment of allergic conjunctivitis. The objective of this study was to evaluate the pharmacokinetics (PKs) and biodistribution of 0.6% bilastine preservative-free eye drops. Methods: Bilastine was quantified in the conjunctiva, cornea, aqueous humor, vitreous humor, iris/ciliary body, retina/choroid, crystalline lens, and plasma, following a single topical administration to male Dutch-belted rabbits. Results: Concentrations of bilastine were highest in the conjunctiva [Cmax: 2,545.04 ng/g, at 6 h postadministration; area under the concentration-time curve (AUCt): 11,382.40 ng·h/g] and cornea (Cmax: 609.11 ng/g, at 1 h postadministration; AUCt: 1,993.88 ng·h/g), followed by the iris/ciliary body, retina/choroid, aqueous humor, plasma, vitreous humor, and crystalline lens. Quantifiable bilastine concentrations were observed up to 24 h after instillation in the conjunctiva (388.45 ng/g), cornea (28.68 ng/g), iris/ciliary body (12.42 ng/g), retina/choroid (1.91 ng/g), and crystalline lens (0.12 ng/g). In plasma, aqueous humor, and vitreous humor, bilastine was detected up to 12 h postadministration (0.18 ng/mL, 0.40 ng/mL, and 0.32 ng/g, respectively). Conclusions: PKs and biodistribution of 0.6% bilastine eye drops in rabbits revealed a marked preferential distribution in the conjunctiva (target tissue), with sustained levels up to 24 h. These findings are consistent with clinical efficacy trials supporting once-daily administration of topical bilastine for treatment of allergic conjunctivitis.
Collapse
Affiliation(s)
- Inés Torrens
- Research, Development and Innovation Department (R&D+i Department), Faes Farma, Bizkaia, Spain
| | - Álvaro Ganza
- Research, Development and Innovation Department (R&D+i Department), Faes Farma, Bizkaia, Spain
| | - Gonzalo Hernández
- Research, Development and Innovation Department (R&D+i Department), Faes Farma, Bizkaia, Spain
| | - Ana Gonzalo
- Research, Development and Innovation Department (R&D+i Department), Faes Farma, Bizkaia, Spain
| | - Arturo Zazpe
- Research, Development and Innovation Department (R&D+i Department), Faes Farma, Bizkaia, Spain
| |
Collapse
|
8
|
Nguyen VP, Henry J, Zhe J, Kieu Q, Qian W, Fu Y, Wang X, Paulus YM. Age differential response to bevacizumab therapy in choroidal neovascularization in rabbits. Exp Eye Res 2022; 223:109215. [PMID: 35973441 PMCID: PMC9728477 DOI: 10.1016/j.exer.2022.109215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Choroidal neovascularization (CNV) in young rabbits has been shown to have a rapid, robust response after treatment with bevacizumab, an anti-vascular endothelial growth factor (VEGF) medication. This investigation evaluates an age differential response to bevacizumab in older populations of rabbits using multimodal high resolution molecular imaging. Young (4 months old) and life span (14 months old) rabbits were given subretinal injections of Matrigel and VEGF to produce CNV. All CNV rabbit models were then treated with a bevacizumab intravitreal injection. Rabbits were then monitored longitudinally using photoacoustic microscopy (PAM), optical coherence tomography (OCT), color photography, and fluorescence imaging. Chain-like gold nanoparticle clusters (CGNP) conjugated with tripeptide arginylglycylaspartic acid (RGD) was injected intravenously for molecular imaging. Robust CNV developed in both young and old rabbits. After intravitreal bevacizumab injection, fluorescence signals were markedly decreased 90.13% in the young group. In contrast, old rabbit CNV area decreased by only 10.56% post-bevacizumab treatment. OCT images confirmed a rapid decrease of CNV in the young group. CGNPs demonstrated high PAM signal in old rabbits and minimal PAM signal in young rabbits after bevacizumab, indicating CNV regression. There is a significant difference in response to intravitreal bevacizumab treatment between young and old rabbits with CNV which can be monitored with multimodal molecular imaging. Old rabbits demonstrate significant persistent disease activity. This represents the first large eye model of persistent disease activity of CNV and could serve as the foundation for future investigations into the mechanism of persistent disease activity and the development of novel therapies.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Quynh Kieu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Wei Qian
- IMRA America Inc., 1044 Woodridge Ave., Ann Arbor, MI, 48105, USA.
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 76706, USA.
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
9
|
Self-sealing hyaluronic acid-coated 30-gauge intravitreal injection needles for preventing vitreous and drug reflux through needle passage. Sci Rep 2021; 11:16996. [PMID: 34417529 PMCID: PMC8379207 DOI: 10.1038/s41598-021-96561-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
Self-sealing hyaluronic acid (HA)-coated self-sealing 30-gauge needles exhibiting instant leakage prevention of intravitreal humor and injected drug were developed in this study. Ninety New Zealand rabbits were used in this study. We assessed dye regurgitation in intravitreal ICG dye injections using HA-coated needles (HA needle group) and conventional needles (control group). Vitreous humor levels of anti-vascular endothelial growth factor (VEGF) were compared between groups one, three, and seven days after intravitreal bevacizumab (0.016 mL) injections. Expression levels of inflammatory cytokines in the aqueous humor and vitreous humor, including prostaglandin E2 (PGE2), interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-6, IL-17, and IL-8, were compared between HA needle, control, and normal (in which intravitreal injection was not performed) groups following 12 intravitreal injections over a period of one week. In the HA needle group, HA remained at the injection site and blocked the hole after intravitreal injection. Dye regurgitation occurred significantly less frequently in the HA needle group (16.7%) than the control group (55.6%) after intravitreal ICG dye injection. Meanwhile, vitreous anti-VEGF levels were markedly higher in the HA needle group than the control group one and three days after intravitreal bevacizumab injections. After 12 intravitreal injections, expression levels of aqueous and vitreous IL-8 significantly increased in the control group compared to the HA needle and normal groups. Conversely, there were no significant differences in the expression of the other seven cytokines among the three groups. Intravitreal injections using HA-coated self-sealing 30-gauge needles can block the outflow of vitreous humor and drugs through the needle passage.
Collapse
|
10
|
Muñoz-Villegas P, Sanchez-Rios A, Quinonez-Alvarado MG, Olvera-Montaño O, Quintana-Hau JD, Baiza-Duran L. Pharmacokinetics and Safety of an Intravitreal Humanized Anti-VEGF-A Monoclonal Antibody (PRO-169), a Biosimilar Candidate to Bevacizumab. J Exp Pharmacol 2021; 13:545-554. [PMID: 34113182 PMCID: PMC8185251 DOI: 10.2147/jep.s308388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background PRO-169 is a biosimilar candidate to bevacizumab (BEV), a monoclonal antibody (mAb) that inhibits vascular endothelial growth factor-A (VEGF-A) developed for intravitreal use. The current study demonstrates the intraocular pharmacokinetics (PK) of PRO-169 and its safety using New Zealand white (NZW) rabbits. Methods Intraocular concentration was evaluated in thirty-six rabbits at 1h, 1, 2, 5, 14 and 30 days after a single bilateral injection of PRO-169 or BEV (1.25 mg/0.05 mL). In a secondary experiment, safety was evaluated after three consecutive unilateral injections at 30-day intervals in twenty-four rabbits (PRO-169: 1.25 mg/0.05 mL or ranibizumab [RZB]: 0.5 mg/0.05 mL), by liver-associated enzymes (LAE), ophthalmological examination and adverse event (AE) incidence. Primary endpoints were vitreous maximum concentration (Cmax), time to attain maximum concentration (tmax), area under curve (AUC0-t), half-life (t1/2) and LAE. Secondary endpoints included aqueous humor (AH) and plasma pharmacokinetics, clinical examination and AEs. Results The Cmax in the vitreous was 593.75 ± 45.63 (PRO-169) vs 644.79 ± 62.65 µg/mL (BEV) (p= 0.136). Tmax was 0.53 ± 0.82 vs 0.85 ± 0.73 days (p= 0.330). The AUC0-t was 3837.72 ± 465.91 vs 4247.31 ± 93.99 days*µg/mL (p= 0.052) and the half-life was 4.99 ± 0.89 vs 5.18 ± 0.88 days (p= 0.711). LAEs were normal in 92% of NZW rabbits; no differences between groups were observed (p>0.05). The AH and plasma PKs were also similar. Finally, clinical examinations found no alterations. AEs were observed in 25% of PRO-169 rabbits, without differences vs RZB (p=0.399). Conclusion PRO-169 can be efficiently diffused and distributed in ocular compartments, showing vitreous pharmacokinetics analogous to BEV. The safety experiment did not find evidence of clinical alterations from a repeated injection of PRO-169. These results provide scientific justification supporting that PRO-169 should be evaluated in future clinical trials to confirm its safety and efficacy.
Collapse
Affiliation(s)
| | | | | | - Oscar Olvera-Montaño
- Medical Affairs Department, Laboratorios Sophia, S.A. de C.V., Zapopan, Jalisco, México
| | | | - Leopoldo Baiza-Duran
- Medical Affairs Department, Laboratorios Sophia, S.A. de C.V., Zapopan, Jalisco, México
| |
Collapse
|
11
|
Shivva V, Boswell CA, Rafidi H, Kelley RF, Kamath AV, Crowell SR. Antibody Format and Serum Disposition Govern Ocular Pharmacokinetics of Intravenously Administered Protein Therapeutics. Front Pharmacol 2021; 12:601569. [PMID: 34025395 PMCID: PMC8138871 DOI: 10.3389/fphar.2021.601569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Protein therapeutics have witnessed tremendous use and application in recent years in treatment of various diseases. Predicting efficacy and safety during drug discovery and translational development is a key factor for successful clinical development of these therapies. In general, drug related toxicities are predominantly driven by pharmacokinetic (PK) exposure at off-target sites. This work explores the ocular PK of intravenously administered protein therapeutics to understand impact of antibody format on off-site exposure. Species matched non-binding rabbit antibody proteins (rabFab and rabIgG) were intravenously administered to male New Zealand White rabbits at a single 1 mg bolus dose and exposure was measured up to 3 weeks. As anticipated based on absence of FcRn recycling, rabFab has relatively fast systemic PK (CL–943 mL/day and t1/2–1.93 days) compared to rabIgG (CL–18.5 mL/day and t1/2–8.93 days). Similarly, rabFab has lower absolute ocular exposure in ocular compartments (e.g., vitreous and aqueous humor) compared to rabIgG, despite higher relative exposures (measured as percent tissue partition in ocular tissues relative to serum, based on Cmax and AUC). In general, percent tissue partition based on AUC (in aqueous and vitreous humor) relative to serum exposure were 10.4 and 8.62 for rabFab respectively and 1.11 and 0.64 for rabIgG respectively. This work emphasizes size and format based ocular exposure of intravenously administered protein therapeutics. Findings from this work enable prediction of format based ocular exposure for systemically administered antibody based therapeutics and aid in selection of molecule format for clinical candidate to minimize ocular exposure.
Collapse
Affiliation(s)
- Vittal Shivva
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Hanine Rafidi
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Robert F Kelley
- Pharmaceutical Development, Genentech, South San Francisco, CA, United States
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Susan R Crowell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| |
Collapse
|
12
|
Santra M, Sharma M, Katoch D, Jain S, Saikia UN, Dogra MR, Luthra-Guptasarma M. Enzymatic vitreolysis using reengineered Vibrio mimicus-derived collagenase. Mol Vis 2021; 27:125-141. [PMID: 33907368 PMCID: PMC8056467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Collagen is a key player contributing to vitreoelasticity and vitreoretinal adhesions. Molecular reorganization causes spontaneous weakening of these adhesions with age, resulting in the separation of the posterior hyaloid membrane (PHM) from the retina in what is called complete posterior vitreous detachment (PVD). Incomplete separation of the posterior hyaloid or tight adherence or both can lead to retinal detachment, vitreomacular traction syndrome, or epiretinal membrane formation, which requires surgical intervention. Pharmacological vitrectomy has the potential of avoiding surgical vitrectomy; it is also useful as an adjunct during retinal surgery to induce PVD. Previously studied enzymatic reagents, such as collagenase derived from Clostridium histolyticum, are nonspecific and potentially toxic. We studied a novel collagenase from Vibrio mimicus (VMC) which remains active (VMA), even after deletion of 51 C-terminal amino acids. To limit the activity of VMA to the vitreous cavity, a fusion construct (inhibitor of hyaluronic acid-VMA [iHA-VMA]) was made in which a 12-mer peptide (iHA, which binds to HA) was fused to the N-terminus of VMA. The construct was evaluated in the context of PVD. METHODS VMA and iHA-VMA were expressed in Escherichia coli, purified, and characterized with gelatin zymography, collagen degradation assay, fluorescamine-based assay, and cell-based assays. Two sets of experiments were performed in New Zealand albino rabbits. Group A (n = 10) received iHA-VMA, while group B (n = 5) received the equivalent dose of VMA. In both groups, saline was injected as a control in the contralateral eyes. Animals were monitored with indirect ophthalmoscopy, optical coherence tomography (OCT), and B-scan ultrasonography. Retinal toxicity was assessed with hematoxylin and eosin (H&E) staining of retinal tissue. RESULTS The activity of iHA-VMA and VMA was comparable and 65-fold lower than that of C. histolyticum collagenase Type IV. In the iHA-VMA group, all the rabbits (n = 10) developed PVD, with complete PVD seen in six animals. No statistically significant histomorphological changes were seen. In the VMA group, four of the five rabbits developed complete PVD; however, retinal morphological changes were seen in two animals. CONCLUSIONS iHA-VMA displays targeted action confined to the vitreous and shows potential for safe pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Mithun Santra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Maryada Sharma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Department of Otolaryngology and Head & Neck surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deeksha Katoch
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sahil Jain
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mangat R. Dogra
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
15
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
16
|
Prieto E, Cardiel MJ, Vispe E, Idoipe M, Garcia-Martin E, Fraile JM, Polo V, Mayoral JA, Pablo LE, Rodrigo MJ. Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. ACTA ACUST UNITED AC 2020; 15:065021. [PMID: 32647098 DOI: 10.1088/1748-605x/aba445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a novel nanoformulation for sustained-release delivery of dexamethasone (DEX) to the ocular posterior segment using a Laponite (LAP) carrier-DEX/LAP 1:10 w w-1 formulation; 10 mg ml-1. In vivo ocular feasibility and pharmacokinetics after intravitreal (IV) and suprachoroidal (SC) administration in rabbit eyes are compared against IV administration of a DEX solution (1 mg ml-1). Thirty rabbit eyes were injected with the DEX/LAP formulation (15 suprachoroid/15 intravitreous). Ophthalmological signs were monitored at day 1 and at weeks 1-4-12-24 post-administration. Three eyes per sample time point were used to quantify DEX concentration using high-performance liquid chromatography-mass spectrometry. The ocular tissues' pharmacokinetic parameters (lens, vitreous humour, choroid-retina unit and sclera) were studied. DEX/LAP was well tolerated under both administration methods. Peak intraocular DEX levels from the DEX/LAP were detected in the vitreous humour after both deliveries soon after administration. The vitreous area under the curve was significantly greater after both DEX/LAP deliveries (IV: 205 968.47; SC: 11 442.22 ng g-1 d-1) than after IV administration of the DEX solution (317.17 ng g-1 d-1). Intravitreal DEX/LAP delivery extended higher vitreous DEX levels up to week 24 (466.32 ± 311.15 ng g-1). With SC delivery, DEX levels were detectable in the choroid-retina unit (12.04 ± 20.85 ng g-1) and sclera (25.46 ± 44.09 ng g-1) up to week 24. This study demonstrated the intraocular feasibility of both SC and IV administration of the DEX/LAP formulation. The LAP increased the intraocular retention time of DEX when compared with conventional solutions. DEX/LAP could be considered a biocompatible and useful sustained-release formulation for treating posterior-pole eye diseases.
Collapse
Affiliation(s)
- Esther Prieto
- Ophthalmology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, E-50009, Zaragoza, Spain. Aragon Institute for Health Research (IIS Aragon), GIMSO research group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, Zaragoza E-50009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Luaces-Rodríguez A, Del Amo EM, Mondelo-García C, Gómez-Lado N, Gonzalez F, Ruibal Á, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Fernández-Ferreiro A, Aguiar P. PET study of ocular and blood pharmacokinetics of intravitreal bevacizumab and aflibercept in rats. Eur J Pharm Biopharm 2020; 154:330-337. [PMID: 32659326 DOI: 10.1016/j.ejpb.2020.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
Intravitreal injections are the standard procedure in the treatment of retinal pathologies, such as the administration of the anti-VEGF antibodies in age-related macular degeneration. The aim of this study is to evaluate the intraocular and blood pharmacokinetics after an intravitreal injection of 89Zr-labelled bevacizumab and 89Zr-labelled aflibercept in Sprague-Dawley rats using Positron Emission Tomography. First, both antibodies were radiolabelled to zirconium-89 with a maximum specific activity of 15 Mbq/mg for bevacizumab and 10 Mbq/mg for aflibercept. Four µL containing 1-1.2 Mq of 89Zr-labelled compound were injected into the vitreous through a 35 G needle. A microPET acquisition was carried out immediately after the injection and at different time points through a 12-day study and blood samples were obtained through the tail vein. Radiolabelling was successfully performed with a radiochemical purity after ultrafiltration above 95% for both agents. Both antibodies ocular curves followed a two-compartment model in which an intraocular elimination half-life of 16.44 h was found for 89Zr-bevacizumab and 4.51 h for 89Zr-aflibercept, considering the alpha phase as the elimination phase. Regarding the beta phase, a half-life of 3.23 days for 89Zr-bevacizumab and 4.69 days for 89Zr-aflibercept were observed. With regards to blood concentration, 89Zr-bevacizumab showed a blood half-life of 7.08 days, whereas 89Zr-aflibercept's was 3.18 days, by a one-compartment model with first-order absorption kinetics. In conclusion, this study shows for the first time the ocular and blood pharmacokinetic analysis after intravitreal injection of aflibercept and bevacizumab in rats.
Collapse
Affiliation(s)
- Andrea Luaces-Rodríguez
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Eva M Del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cristina Mondelo-García
- Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Nuclear Medicine Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Gonzalez
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), CIMUS, University of Santiago de Compostela (USC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Álvaro Ruibal
- Nuclear Medicine Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Pablo Aguiar
- Nuclear Medicine Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
18
|
Song H, Zeng Y, Sardar Pasha SPB, Bush RA, Vijayasarathy C, Qian H, Wei L, Wiley HE, Wu Z, Sieving PA. Trans-Ocular Electric Current In Vivo Enhances AAV-Mediated Retinal Transduction in Large Animal Eye After Intravitreal Vector Administration. Transl Vis Sci Technol 2020; 9:28. [PMID: 32844051 PMCID: PMC7416894 DOI: 10.1167/tvst.9.7.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 01/25/2023] Open
Abstract
Purpose Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: “electric-current vector mobility (ECVM).” The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.
Collapse
Affiliation(s)
- Hongman Song
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yong Zeng
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ronald A Bush
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camasamudram Vijayasarathy
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Sieving
- Section for Translational Research on Retinal and Macular Degeneration, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA.,National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Ophthalmology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| |
Collapse
|
19
|
Sheibani N, Zaitoun IS, Wang S, Darjatmoko SR, Suscha A, Song YS, Sorenson CM, Shifrin V, Albert DM, Melgar-Asensio I, Kandela I, Henkin J. Inhibition of retinal neovascularization by a PEDF-derived nonapeptide in newborn mice subjected to oxygen-induced ischemic retinopathy. Exp Eye Res 2020; 195:108030. [PMID: 32272114 DOI: 10.1016/j.exer.2020.108030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/24/2023]
Abstract
Retinopathy of prematurity (ROP) is a growing cause of lifelong blindness and visual defects as improved neonatal care worldwide increases survival in very-low-birthweight preterm newborns. Advancing ROP is managed by laser surgery or a single intravitreal injection of anti-VEGF, typically at 33-36 weeks gestational age. While newer methods of scanning and telemedicine improve monitoring ROP, the above interventions are more difficult to deliver in developing countries. There is also concern as to laser-induced detachment and adverse developmental effects in newborns of anti-VEGF treatment, spurring a search for alternative means of mitigating ROP. Pigment epithelium-derived factor (PEDF), a potent angiogenesis inhibitor appears late in gestation, is undetected in 25-28 week vitreous, but present at full term. Its absence may contribute to ROP upon transition from high-to-ambient oxygen environment or with intermittent hypoxia. We recently described antiangiogenic PEDF-derived small peptides which inhibit choroidal neovascularization, and suggested that their target may be laminin receptor, 67LR. The latter has been implicated in oxygen-induced ischemic retinopathy (OIR). Here we examined the effect of a nonapeptide, PEDF 336, in a newborn mouse OIR model. Neovascularization was significantly decreased in a dose-responsive manner by single intravitreal (IVT) injections of 1.25-7.5 μg/eye (1.0-6.0 nmol/eye). By contrast, anti-mouse VEGFA164 was only effective at 25 ng/eye, with limited dose-response. Combination of anti-VEGFA164 with PEDF 336 gave only the poorer anti-VEGF response while abrogating the robust inhibition seen with peptide-alone, suggesting a need for VEGF in sensitizing the endothelium to the peptide. VEGF stimulated 67LR presentation on endothelial cells, which was decreased in the presence of PEDF 336. Mouse and rabbit eyes showed no histopathology or inflammation after IVT peptide injection. Thus, PEDF 336 is a potential ROP therapeutic, but is not expected to be beneficial in combination with anti-VEGF.
Collapse
Affiliation(s)
- Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ismail S Zaitoun
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shoujian Wang
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Soesiawati R Darjatmoko
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Andrew Suscha
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Yong-Seok Song
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Daniel M Albert
- Department of Ophthalmology, Casey Eye Institute, Oregon Health Sciences University, Portland, USA
| | | | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
20
|
Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today 2019; 24:1679-1684. [PMID: 31175955 PMCID: PMC6708448 DOI: 10.1016/j.drudis.2019.05.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 05/31/2019] [Indexed: 01/21/2023]
Abstract
Drug delivery to the posterior segment of the eye remains challenging even though the eye is readily accessible. Its unique and complex anatomy and physiology contribute to the limited options for drug delivery via non-invasive topical treatment, which is the prevalent ophthalmic treatment. To treat the most common retinal diseases, intravitreal (IVT) injection has been a common and effective therapy. With the advancement of nanotechnologies, novel formulations and drug delivery systems are being developed to treat posterior segment diseases. Here, we discuss the recent advancement in ocular delivery systems, including-sustained release formulations, IVT implants, and preclinical topical formulations, and the challenges faced in their clinical translation.
Collapse
Affiliation(s)
- Fernando J Cabrera
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel C Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kartik Reddy
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Crystal S Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Lin X, Wang BJ, Wang YC, Chu RY, Dai JH, Zhou XT, Qu XM, Liu H, Zhou H. Scleral ultrastructure and biomechanical changes in rabbits after negative lens application. Int J Ophthalmol 2018; 11:354-362. [PMID: 29600166 DOI: 10.18240/ijo.2018.03.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/15/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To address the microstructure and biomechanical changes of the sclera of rabbits after negative lens application by spectacle frame apparatus. METHODS Five New Zealand rabbits of seven weeks post-natal were treated with -8 D lens monocularly over the course of two weeks. Refractive errors and axial length (AXL) were measured at the 1st, 7th and 14th days of the induction period. Ultrastructure of sclera was determined with electron microscopy. Biomechanical properties were tested by an Instron 5565 universal testing machine. RESULTS Lens-induced (LI) eyes elongated more rapidly compared with fellow eyes with AXL values of 15.56±0.14 and 15.21±0.14 mm (P<0.01). Fibril diameter was significantly smaller in the LI eyes compared with control ones in the inner, middle, and outer layers (inner layer, 63.533 vs 76.467 nm; middle layer, 92.647 vs 123.984 nm; outer layer, 86.999 vs 134.257 nm, P<0.01, respectively). In comparison with control eyes, macrophage-like cells that engulfed fibroblasts, dilated endoplasmic reticulum, and vacuoles in fibroblasts were observed in the inner and middle stroma in the LI eyes. Ultimate stress and Young's modulus were lower in the LI eyes compared with those in the control eyes. CONCLUSION Negative lens application alters eye growth, and results in axial elongation with changes in scleral ultrastructural and mechanical properties.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Bing-Jie Wang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Yen-Chiao Wang
- School of Optometry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ren-Yuan Chu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Jin-Hui Dai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xing-Tao Zhou
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xiao-Mei Qu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Hong Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Hao Zhou
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| |
Collapse
|