1
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Singh H, Ramon A, Finore D, Burnham K, McRobert S, Lippman-Bell J. Learning Deficits and Attenuated Adaptive Stress Response After Early-Life Seizures in Zebrafish. Front Neurosci 2022; 16:869671. [PMID: 35527822 PMCID: PMC9073075 DOI: 10.3389/fnins.2022.869671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early-life seizures (ELS) are often associated with the development of cognitive deficits. However, methods to predict and prevent these deficits are lacking. To increase the range of research models available to study cognitive consequences of ELS, we investigated whether seizures in larval zebrafish (Danio rerio) lead to behavioral deficits later in life. We thus modified the existing pentylenetetrazole (PTZ)-induced seizure model in larval zebrafish, exposing zebrafish to PTZ daily from 5 to 7 days post-fertilization (dpf). We then compared later-life learning, social behavior (shoaling), and behavioral and chemical measures of anxiety in the PTZ-exposed zebrafish (PTZ group) to that of naïve clutchmates (untouched controls, UC) and to a second control group (handling control, HC) that experienced the same handling as the PTZ group, but without PTZ exposure. We observed that only the PTZ group displayed a significant deficit in a y-maze learning task, while only the HC group displayed a social deficit of decreased shoaling. HC fish also showed an increased frequency of behavioral freezing and elevated cortisol responses to netting, heightened stress responses not seen in the PTZ fish. Since mild stressors, such as the handling the HC fish experienced, can lead to learned, advantageous responses to stress later in life, we tested escape response in the HC fish using an acoustic startle stimulus. The HC group showed an enhanced startle response, swimming significantly farther than either the PTZ or UC group immediately after being startled. Taken together, these results indicate that seizures in larval zebrafish impair learning and the development of an adaptive, heightened stress response after early-life stress. These findings expand the behavioral characterization of the larval zebrafish seizure model, strengthening the power of this model for ELS research.
Collapse
Affiliation(s)
- Harsimran Singh
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Alfonsina Ramon
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Dana Finore
- Department of Biology, Saint Joseph's University, Philadelphia, PA, United States
| | - Kaleigh Burnham
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Scott McRobert
- Department of Biology, Saint Joseph's University, Philadelphia, PA, United States
| | - Jocelyn Lippman-Bell
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
da Silva MC, Canário AVM, Hubbard PC, Gonçalves DMF. Physiology, endocrinology and chemical communication in aggressive behaviour of fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1217-1233. [PMID: 33410154 PMCID: PMC8247941 DOI: 10.1111/jfb.14667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 05/10/2023]
Abstract
Fishes show remarkably diverse aggressive behaviour. Aggression is expressed to secure resources; adjusting aggression levels according to context is key to avoid negative consequences for fitness and survival. Nonetheless, despite its importance, the physiological basis of aggression in fishes is still poorly understood. Several reports suggest hormonal modulation of aggression, particularly by androgens, but contradictory studies have been published. Studies exploring the role of chemical communication in aggressive behaviour are also scant, and the pheromones involved remain to be unequivocally characterized. This is surprising as chemical communication is the most ancient form of information exchange and plays a variety of other roles in fishes. Furthermore, the study of chemical communication and aggression is relevant at the evolutionary, ecological and economic levels. A few pioneering studies support the hypothesis that aggressive behaviour, at least in some teleosts, is modulated by "dominance pheromones" that reflect the social status of the sender, but there is little information on the identity of the compounds involved. This review aims to provide a global view of aggressive behaviour in fishes and its underlying physiological mechanisms including the involvement of chemical communication, and discusses the potential use of dominance pheromones to improve fish welfare. Methodological considerations and future research directions are also outlined.
Collapse
Affiliation(s)
- Melina Coelho da Silva
- CCMAR – Centro e Ciências do MarUniversidade do AlgarveFaroPortugal
- ISE – Institute of Science and EnvironmentUniversity of Saint JosephMacauChina
| | | | | | | |
Collapse
|
4
|
Ogi A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM. Social Preference Tests in Zebrafish: A Systematic Review. Front Vet Sci 2021; 7:590057. [PMID: 33553276 PMCID: PMC7862119 DOI: 10.3389/fvets.2020.590057] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.
Collapse
Affiliation(s)
- Asahi Ogi
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Valentina Naef
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | | | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Filippo M Santorelli
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| |
Collapse
|
5
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Friend AJ, Bao W, Alekseeva PA, Lakstygal AM, Meshalkina DA, Demin KA, de Abreu MS, Rosemberg DB, Kalueff AV. Understanding zebrafish aggressive behavior. Behav Processes 2019; 158:200-210. [DOI: 10.1016/j.beproc.2018.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
|
6
|
Volgin AD, Yakovlev OA, Demin KA, de Abreu MS, Alekseeva PA, Friend AJ, Lakstygal AM, Amstislavskaya TG, Bao W, Song C, Kalueff AV. Zebrafish models for personalized psychiatry: Insights from individual, strain and sex differences, and modeling gene x environment interactions. J Neurosci Res 2018; 97:402-413. [PMID: 30320468 DOI: 10.1002/jnr.24337] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/16/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms. Due to high reproduction capability, fully sequenced genome, easy gene editing, and high genetic and physiological homology with humans, zebrafish (Danio rerio) are emerging as a novel powerful model in biomedicine. Mounting evidence supports zebrafish as a useful model organism in CNS research. Robustly expressed in these fish, individual, strain, and sex differences shape their CNS responses to genetic, environmental, and pharmacological manipulations. Here, we discuss zebrafish as a promising complementary translational tool to further advance patient-centered personalized psychiatry.
Collapse
Affiliation(s)
- Andrey D Volgin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Oleg A Yakovlev
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Military Medical Academy, St Petersburg, Russia
| | - Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, Louisiana
| | - Anton M Lakstygal
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana.,Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|