1
|
Chen R, Hao Z, Wang Y, Zhu H, Hu Y, Chen T, Zhang P, Li J. Mesenchymal Stem Cell-Immune Cell Interaction and Related Modulations for Bone Tissue Engineering. Stem Cells Int 2022; 2022:7153584. [PMID: 35154331 PMCID: PMC8825274 DOI: 10.1155/2022/7153584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Critical bone defects and related delayed union and nonunion are still worldwide problems to be solved. Bone tissue engineering is mainly aimed at achieving satisfactory bone reconstruction. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells that can differentiate into bone cells and can be used as one of the key pillars of bone tissue engineering. In recent decades, immune responses play an important role in bone regeneration. Innate immune responses provide a suitable inflammatory microenvironment for bone regeneration and initiate bone regeneration in the early stage of fracture repair. Adaptive immune responses maintain bone regeneration and bone remodeling. MSCs and immune cells regulate each other. All kinds of immune cells and secreted cytokines can regulate the migration, proliferation, and osteogenic differentiation of MSCs, which have a strong immunomodulatory ability to these immune cells. This review mainly introduces the interaction between MSCs and immune cells on bone regeneration and its potential mechanism, and discusses the practical application in bone tissue engineering by modulating this kind of cell-to-cell crosstalk. Thus, an in-depth understanding of these principles of bone immunology can provide a new way for bone tissue engineering.
Collapse
Affiliation(s)
- Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongzhen Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Peng Zhang
- Department of Orthopedics, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou 215153, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
de Almeida Baptista MV, da Silva LT, Samer S, Oshiro TM, Shytaj IL, Giron LB, Pena NM, Cruz N, Gosuen GC, Ferreira PRA, Cunha-Neto E, Galinskas J, Dias D, Sucupira MCA, de Almeida-Neto C, Salomão R, da Silva Duarte AJ, Janini LM, Hunter JR, Savarino A, Juliano MA, Diaz RS. Immunogenicity of personalized dendritic-cell therapy in HIV-1 infected individuals under suppressive antiretroviral treatment: interim analysis from a phase II clinical trial. AIDS Res Ther 2022; 19:2. [PMID: 35022035 PMCID: PMC8753935 DOI: 10.1186/s12981-021-00426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
Background We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. Methods PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. Results The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. Conclusions MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016) Supplementary Information The online version contains supplementary material available at 10.1186/s12981-021-00426-z.
Collapse
|
3
|
Abdullah TM, Whatmore J, Bremer E, Slibinskas R, Michalak M, Eggleton P. Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother 2021; 71:1655-1669. [PMID: 34800147 PMCID: PMC9188521 DOI: 10.1007/s00262-021-03072-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/27/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Calreticulin (CRT) is an endoplasmic reticulum (ER) chaperone, but can appear surface bound on cancers cells, including ovarian cancers (OC). We investigated at what stage of cell viability, CRT appeared associated with surface of human OC cells. CRT on pre-apoptotic tumour cells is thought to initiate their eradication via a process termed immunogenic cell death (ICD). METHODS We treated OC cells with the chemotherapeutic-doxorubicin (DX) known to induce translocation of CRT to some tumour cell surfaces, with and without the ER stressor-thapsigargin (TG)-and/or an ER stress inhibitor-TUDCA. We monitored translocation/release of CRT in pre-apoptotic cells by flow cytometry, immunoblotting and ELISA. We investigated the difference in binding of FITC-CRT to pre-apoptotic, apoptotic and necrotic cells and the ability of extracellular CRT to generate immature dendritic cells from THP-1 monocytes. RESULTS Dx-treatment increased endogenously released CRT and extracellular FITC_CRT binding to human pre-apoptotic OC cells. DX and TG also promoted cell death in OC cells which also increased CRT release. These cellular responses were significantly inhibited by TUDCA, suggesting that ER stress is partially responsible for the changes in CRT cellular distribution. Extracellular CRT induces maturation of THP-1 towards a imDC phenotype, an important component of ICD. CONCLUSION Collectively, these cellular responses suggest that ER stress is partially responsible for the changes in CRT cellular distribution. ER-stress regulates in part the release and binding of CRT to human OC cells where it may play a role in ICD.
Collapse
Affiliation(s)
- Trefa M Abdullah
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,College of Pharmacy, Department Biochemistry and Clinical Chemistry, University of Sulaimani, Iraqi Kurdistan Region, Sulaimani, Iraq
| | - Jacqueline Whatmore
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Edwin Bremer
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Experimental Hematology, Section Immunohematology, Cancer Research Center Groningen (CRCG), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rimantas Slibinskas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, 10257, Vilnius, Lithuania
| | - Marek Michalak
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Paul Eggleton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Revolo Biotherapeutics, New Orleans, LA, 70130, USA
| |
Collapse
|
4
|
Zhu J, Inomata T, Di Zazzo A, Kitazawa K, Okumura Y, Coassin M, Surico PL, Fujio K, Yanagawa A, Miura M, Akasaki Y, Fujimoto K, Nagino K, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Huang T, Shokirova H, Eguchi A, Murakami A. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204667. [PMID: 34682792 PMCID: PMC8537034 DOI: 10.3390/jcm10204667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Corneal transplantation is one of the most successful forms of solid organ transplantation; however, immune rejection is still a major cause of corneal graft failure. Both innate and adaptive immunity play a significant role in allograft tolerance. Therefore, immune cells, cytokines, and signal-transduction pathways are critical therapeutic targets. In this analysis, we aimed to review the current literature on various immunotherapeutic approaches for corneal-allograft rejection using the PubMed, EMBASE, Web of Science, Cochrane, and China National Knowledge Infrastructure. Retrievable data for meta-analysis were screened and assessed. The review, which evaluated multiple immunotherapeutic approaches to prevent corneal allograft rejection, showed extensive involvement of innate and adaptive immunity components. Understanding the contribution of this immune diversity to the ocular surface is critical for ensuring corneal allograft survival.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Ophthalmology, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
- Correspondence: ; Tel.: +81-3-5802-1228
| | - Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 6020841, Japan;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Pier Luigi Surico
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Keiichi Fujimoto
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| |
Collapse
|
5
|
Agnihotri P, Monu, Ramani S, Chakraborty D, Saquib M, Biswas S. Differential Metabolome in Rheumatoid Arthritis: a Brief Perspective. Curr Rheumatol Rep 2021; 23:42. [PMID: 33913028 DOI: 10.1007/s11926-021-00989-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory disease of the synovium that affects the movable joints. It develops due to the infiltration and invasion of the synovial joints by immune cells. Metabolism is anabolic or catabolic chemical reactions occurring in a cell. The biochemical pathways in synovial and immune cells are altered affecting the downstream metabolite formation. Changes in the metabolite levels alter signaling cascades which further intensify the disease. Despite current knowledge of metabolomics, there remain certain features that need to be elucidated to correlate the differential metabolite levels with RA. RECENT FINDINGS Metabolite profiling can be used to find altered patterns of metabolites in RA. Glucose, lipid, amino acid, and estrogen metabolism are the key pathways that are altered and contribute to the aggravation of RA. The altered metabolic pathways involved in different cells in RA results in complex interactions between metabolites and biomacromolecules; thus, it generates autoantigens. Moreover, understanding the correlation between differential metabolites and disease severity might help reveal potential new biomarkers and therapeutic targets for RA pathogenesis. So, considering the multi-faceted role of altered metabolites in the pathogenesis of RA, metabolic pathways of different cells are needed to be studied for a better understanding of their functions in the disease and thus, improving the present therapeutic strategies.
Collapse
Affiliation(s)
- Prachi Agnihotri
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India
| | - Monu
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheetal Ramani
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debolina Chakraborty
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Saquib
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sagarika Biswas
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi, 110007, India.
| |
Collapse
|
6
|
Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on From Sipuleucel-T: New Dendritic Cell Vaccine Strategies for Prostate Cancer. Front Immunol 2021; 12:641307. [PMID: 33854509 PMCID: PMC8039370 DOI: 10.3389/fimmu.2021.641307] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors evade the immune system though a myriad of mechanisms. Using checkpoint inhibitors to help reprime T cells to recognize tumor has had great success in malignancies including melanoma, lung, and renal cell carcinoma. Many tumors including prostate cancer are resistant to such treatment. However, Sipuleucel-T, a dendritic cell (DC) based immunotherapy, improved overall survival (OS) in prostate cancer. Despite this initial success, further DC vaccines have failed to progress and there has been limited uptake of Sipuleucel-T in the clinic. We know in prostate cancer (PCa) that both the adaptive and the innate arms of the immune system contribute to the immunosuppressive environment. This is at least in part due to dysfunction of DC that play a crucial role in the initiation of an immune response. We also know that there is a paucity of DC in PCa, and that those there are immature, creating a tolerogenic environment. These attributes make PCa a good candidate for a DC based immunotherapy. Ultimately, the knowledge gained by much research into antigen processing and presentation needs to translate from bench to bedside. In this review we will analyze why newer vaccine strategies using monocyte derived DC (MoDC) have failed to deliver clinical benefit, particularly in PCa, and highlight the emerging antigen loading and presentation technologies such as nanoparticles, antibody-antigen conjugates and virus co-delivery systems that can be used to improve efficacy. Lastly, we will assess combination strategies that can help overcome the immunosuppressive microenvironment of PCa.
Collapse
Affiliation(s)
- Sarah I. M. Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Concord Repatriation General Hospital, Concord, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - L. G. Horvath
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Wang A, Bai Y. Dendritic cells: The driver of psoriasis. J Dermatol 2019; 47:104-113. [PMID: 31833093 DOI: 10.1111/1346-8138.15184] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/17/2019] [Indexed: 12/20/2022]
Abstract
Psoriasis is a chronic skin inflammatory disorder, the immune mechanism of which has been profoundly elucidated in the past few years. The dominance of the interleukin (IL)-23/IL-17 axis is a significant breakthrough in the understanding of the pathogenesis of psoriasis, and treatment targeting IL-23 and IL-17 has successfully benefited patients with the disease. The skin contains a complex network of dendritic cells (DC) mainly composed of epidermal Langerhans cells, bone marrow-derived dermal conventional DC, plasmacytoid DC and inflammatory DC. As the prominent cellular source of α-interferon, tumor necrosis factor-α, IL-12 and IL-23, DC play a pivotal role in psoriasis. Thus, targeting pathogenic DC subsets is a valid strategy for alleviating and preventing psoriasis and other DC-derived diseases. In this review, we survey the known role of DC in this disease.
Collapse
Affiliation(s)
- Ao Wang
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| | - YanPing Bai
- Clinical Institute of China-Japan Friendship Hospital, Graduate School of Peking Union Medical College, Beijing, China.,Department of Dermatology and Venerology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Rsad2 is necessary for mouse dendritic cell maturation via the IRF7-mediated signaling pathway. Cell Death Dis 2018; 9:823. [PMID: 30068989 PMCID: PMC6070531 DOI: 10.1038/s41419-018-0889-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and inducers of T cell-mediated immunity. However, few specific markers of mature DCs (mDC) have been reported. A previous microarray analysis revealed expression of mDC-specific genes and identified Rsad2 (radical S-adenosyl methionine domain containing 2) as a candidate specific marker for DC maturation. Mouse bone marrow-derived DCs were transfected with Rsad2 siRNA and examined by flow cytometry, ELISA, western, and confocal microscopy. C57BL/6 mice received intravenously B16F10 cells to establish a pulmonary metastasis model. Tumor-bearing mice then received subcutaneously two injections of mDCs or Rsad2 knockdown DCs. The cytotoxic T lymphocyte (CTL) population was examined from splenocytes of DC-vaccinated mice by flow cytometry. Rsad2 was induced at high levels in LPS-stimulated mDCs and mDC function was markedly attenuated under conditions of Rsad2 knockdown. Moreover, Rsad2 was necessary for mDC maturation via the IRF7-mediated signaling pathway. The importance of Rsad2 was confirmed in an Rsad2 knockdown lung metastasis mouse model in which mDCs lost their antitumor efficacy. Data on the CTL population further supported the results as above. Taken together, Rsad2 was an obvious and specific marker necessary for DC maturation and these findings will be clearly helpful for further understanding of DC biology.
Collapse
|
9
|
Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J Immunol Res 2018; 2018:7873257. [PMID: 29967803 PMCID: PMC6008858 DOI: 10.1155/2018/7873257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
The Crotalus durissus terrificus rattlesnake venom, its main toxin, crotoxin (CTX), and its crotapotin (CA) and phospholipase A2 (CB) subunits modulate the immune system. Formyl peptide receptors (FPRs) and lipoxin A4 (LXA4) are involved in CTX's effect on macrophages and neutrophils. Dendritic cells (DCs) are plasticity cells involved in the induction of adaptive immunity and tolerance maintenance. Therefore, we evaluated the effect of CTX, CA or CB on the maturation of DCs derived from murine bone marrow (BM). According to data, CTX and CB-but not CA-induced an increase of MHC-II, but not costimulatory molecules on DCs. Furthermore, CTX and CB inhibited the expression of costimulatory and MHC-II molecules, secretion of proinflammatory cytokines and NF-κBp65 and p38/ERK1/2-MAPK signaling pathways by LPS-incubated DCs. Differently, CTX and CB induced IL-10, PGE2 and LXA4 secretion in LPS-incubated DCs. Lower proliferation and IL-2 secretion were verified in coculture of CD3+ cells and DCs incubated with LPS plus CTX or CB compared with LPS-incubated DCs. The effect of CTX and CB on DCs was abolished in cultures incubated with a FPRs antagonist. Hence, CTX and CB exert a modulation on functional activity of DCs; we also checked the involvement the FPR family on cell activities.
Collapse
|
10
|
Matsueda S, Itoh K, Shichijo S. Antitumor activity of antibody against cytotoxic T lymphocyte epitope peptide of lymphocyte-specific protein tyrosine kinase. Cancer Sci 2018; 109:611-617. [PMID: 29388341 PMCID: PMC5834778 DOI: 10.1111/cas.13522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 01/19/2023] Open
Abstract
Although humoral responses against CTL epitope peptides from lymphocyte‐specific protein tyrosine kinase (Lck) antigen have been observed in the majority of healthy donors and cancer patients, the biological activity of the antibody has not been determined. We investigated the biological activity of mAb against CTL epitope peptide of Lck antigen at positions 486‐494 (anti‐Lck‐486 mAb). This mAb induced dendritic cell maturation from murine bone marrow cells by the immune complex form in vitro, and inhibited tumor growth in association with a suppression of tumor‐infiltrating T cells, including T regulatory cells in a murine model using female BALB/cCrlCrlj mice (H‐2Kd). More potent tumor inhibition was observed when this mAb was given prior to peptide vaccination. These results may help to unveil the biological activity of anti‐Lck peptide antibodies against CTL epitope peptides.
Collapse
Affiliation(s)
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| | | |
Collapse
|
11
|
De Santis S, Galleggiante V, Scandiffio L, Liso M, Sommella E, Sobolewski A, Spilotro V, Pinto A, Campiglia P, Serino G, Santino A, Notarnicola M, Chieppa M. Secretory Leukoprotease Inhibitor (Slpi) Expression Is Required for Educating Murine Dendritic Cells Inflammatory Response Following Quercetin Exposure. Nutrients 2017; 9:nu9070706. [PMID: 28684695 PMCID: PMC5537821 DOI: 10.3390/nu9070706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells' (DCs) ability to present antigens and initiate the adaptive immune response confers them a pivotal role in immunological defense against hostile infection and, at the same time, immunological tolerance towards harmless components of the microbiota. Food products can modulate the inflammatory status of intestinal DCs. Among nutritionally-derived products, we investigated the ability of quercetin to suppress inflammatory cytokines secretion, antigen presentation, and DCs migration towards the draining lymph nodes. We recently identified the Slpi expression as a crucial checkpoint required for the quercetin-induced inflammatory suppression. Here we demonstrate that Slpi-KO DCs secrete a unique panel of cytokines and chemokines following quercetin exposure. In vivo, quercetin-enriched food is able to induce Slpi expression in the ileum, while little effects are detectable in the duodenum. Furthermore, Slpi expressing cells are more frequent at the tip compared to the base of the intestinal villi, suggesting that quercetin exposure could be more efficient for DCs projecting periscopes in the intestinal lumen. These data suggest that quercetin-enriched nutritional regimes may be efficient for suppressing inflammatory syndromes affecting the ileo-colonic tract.
Collapse
Affiliation(s)
- Stefania De Santis
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, via Monteroni, 73100 Lecce, Italy.
| | - Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Letizia Scandiffio
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | | | - Vito Spilotro
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Aldo Pinto
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
- European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125 Salerno, Italy.
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, via Monteroni, 73100 Lecce, Italy.
| | - Maria Notarnicola
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Institute of Research, Via Turi, 27, 70013 Castellana Grotte, Italy.
- Department of Pharmacy, School of Pharmacy, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
12
|
Bone marrow mesenchymal stem cells inhibit dendritic cells differentiation and maturation by microRNA-23b. Biosci Rep 2017; 37:BSR20160436. [PMID: 28096318 PMCID: PMC5398252 DOI: 10.1042/bsr20160436] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Research on regulation and its mechanism of bone marrow mesenchymal stem cells (BMSCs) on dendritic cells (DCs), which is the initiating factor in immune response has applicable clinical value. Although BMSCs have a significant regulatory effect on the maturation of DCs, its molecular mechanism is still unclear. BMSCs and DCs, were co-cultured by different concentration ratios. Flow cytometry was used to detect the expression of DC markers (CD83, CD11c). Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of related genes in RNA level. Expression of the target proteins was detected with using Western blot assay. miRNA inhibitor and miRNA mimic were used to suppress and up-regulate the expression of the target gene. In this research, our results demonstrated that BMSCs notably inhibited maturation of DCs in the co-culture system of BMSCs and DCs and confirmed that this inhibition is due to overexpression of miR-23b. Furthermore, this research found that miR-23b overexpression inhibited the expression of p50/p65, thus blocked the activation of the NF-κB pathway. In conclusion, BMSCs affected the activation of NF-κB pathway through miR-23b overexpression resulting in inhibition of the maturation and differentiation of DCs.
Collapse
|
13
|
Pylaeva E, Lang S, Jablonska J. The Essential Role of Type I Interferons in Differentiation and Activation of Tumor-Associated Neutrophils. Front Immunol 2016; 7:629. [PMID: 28066438 PMCID: PMC5174087 DOI: 10.3389/fimmu.2016.00629] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) were first characterized in the process of viral interference. However, since then, IFNs are found to be involved in a wide range of biological processes. In the mouse, type I IFNs comprise a large family of cytokines. At least 12 IFN-α and one IFN-β can be found and they all signal through the same receptor (IFNAR). A hierarchy of expression has been established for type I IFNs, where IFN-β is induced first and it activates in a paracrine and autocrine fashion a cascade of other type I IFNs. Besides its importance in the induction of the IFN cascade, IFN-β is also constitutively expressed in low amounts under normal non-inflammatory conditions, thus facilitating "primed" state of the immune system. In the context of cancer, type I IFNs show strong antitumor function as they play a key role in mounting antitumor immune responses through the modulation of neutrophil differentiation, activation, and migration. Owing to their plasticity, neutrophils play diverse roles during cancer development and metastasis since they possess both tumor-promoting (N2) and tumor-limiting (N1) properties. Notably, the differentiation into antitumor phenotype is strongly supported by type I IFNs. It could also be shown that these cytokines are critical for the suppression of neutrophil migration into tumor and metastasis site by regulating chemokine receptors, e.g., CXCR2 on these cells and by influencing their longevity. Type I IFNs limit the life span of neutrophils by influencing both, the extrinsic as well as the intrinsic apoptosis pathways. Such antitumor neutrophils efficiently suppress the pro-angiogenic factors expression, e.g., vascular endothelial growth factor and matrix metallopeptidase 9. This in turn restricts tumor vascularization and growth. Thus, type I IFNs appear to be the part of the natural tumor surveillance mechanism. Here we provide an up to date review of how type I IFNs influence the pro- and antitumor properties of neutrophils. Understanding these mechanisms is particularly important from a therapeutic point of view.
Collapse
Affiliation(s)
- Ekaterina Pylaeva
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| | - Stephan Lang
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otolaryngology, University Hospital Essen , Essen , Germany
| |
Collapse
|
14
|
Yang M, Zhang F, Qin K, Wu M, Li H, Zhu H, Ning Q, Lei P, Shen G. Glucose-Regulated Protein 78-Induced Myeloid Antigen-Presenting Cells Maintained Tolerogenic Signature upon LPS Stimulation. Front Immunol 2016; 7:552. [PMID: 27990144 PMCID: PMC5131008 DOI: 10.3389/fimmu.2016.00552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 01/07/2023] Open
Abstract
The 78-kDa glucose-regulated protein (Grp78) is stress-inducible chaperone that mostly reside in the endoplasmic reticulum. Grp78 has been described to be released at times of cellular stress and as having extracellular properties that are anti-inflammatory or favor the resolution of inflammation. As antigen-presenting cells (APCs) play a critical role in both the priming of adaptive immune responses and the induction of self-tolerance, herein, we investigated the effect of Grp78 on the maturation of murine myeloid APCs (CD11c+ cells). Results showed that CD11c+ cells could be bound by AF488-labeled Grp78 and that Grp78 treatment induced a tolerogenic phenotype comparable to immature cells. Furthermore, when exposed to lipopolysaccharide, Grp78-treated CD11c+ cells (DCGrp78) did not adopt a mature dendritic cell phenotype. DCGrp78-primed T cells exhibited reduced proliferation along with a concomitant expansion of CD4+CD25+FoxP3+ cells in pancreaticoduodenal lymph nodes and induction of T cell apoptosis in vitro and ex vivo. The above work suggests that Grp78 is an immunomodulatory molecule that could aid resolution of inflammation. It may thus contribute to induce durable tolerance to be of potential therapeutic benefit in transplanted allogeneic grafts and autoimmune diseases such as type I diabetes.
Collapse
Affiliation(s)
- Muyang Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Kai Qin
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Min Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Heli Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
15
|
Conti BJ, Santiago KB, Cardoso EO, Freire PP, Carvalho RF, Golim MA, Sforcin JM. Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells. J Pharm Pharmacol 2016; 68:1604-1612. [DOI: 10.1111/jphp.12628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 01/28/2023]
Abstract
Abstract
Objectives
Dendritic cells (DCs) are antigen-presenting cells, essential for recognition and presentation of pathogens to T cells. Propolis, a resinous material produced by bees from various plants, exhibits numerous biological properties, highlighting its immunomodulatory action. Here, we assayed the effects of propolis on the maturation and function of human DCs.
Methods
DCs were generated from human monocytes and incubated with propolis and LPS. NF-κB and cytokines production were determined by ELISA. microRNA's expression was analysed by RT-qPCR and cell markers detection by flow cytometry. Colony-forming units were obtained to assess the bactericidal activity of propolis-treated DCs.
Key findings
Propolis activated DCs in the presence of LPS, inducing NF-kB, TNF-α, IL-6 and IL-10 production. The inhibition of hsa-miR-148a and hsa-miR-148b abolished the inhibitory effects on HLA-DR and pro-inflammatory cytokines. The increased expression of hsa-miR-155 may be correlated to the increase in TLR-4 and CD86 expression, maintaining LPS-induced expression of HLA-DR and CD40. Such parameters may be involved in the increased bactericidal activity of DCs against Streptococcus mutans.
Conclusion
Propolis modulated the maturation and function of DCs and may be useful in the initial steps of the immune response, providing a novel approach to the development of DC-based strategies and for the discovery of new immunomodulators.
Collapse
Affiliation(s)
- Bruno J Conti
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Karina B Santiago
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Eliza O Cardoso
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula P Freire
- Department of Morphology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Robson F Carvalho
- Department of Morphology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marjorie A Golim
- Botucatu Blood Center, School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil
| | - José M Sforcin
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|