1
|
Banerjee S, Daetwyler S, Bai X, Michaud M, Jouhet J, Madhugiri S, Johnson E, Wang CW, Fiolka R, Toulmay A, Prinz WA. The Vps13-like protein BLTP2 is pro-survival and regulates phosphatidylethanolamine levels in the plasma membrane to maintain its fluidity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578804. [PMID: 38370643 PMCID: PMC10871178 DOI: 10.1101/2024.02.04.578804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Lipid transport proteins (LTPs) facilitate nonvesicular lipid exchange between cellular compartments and have critical roles in lipid homeostasis1. A new family of bridge-like LTPs (BLTPs) is thought to form lipid-transporting conduits between organelles2. One, BLTP2, is conserved across species but its function is not known. Here, we show that BLTP2 and its homolog directly regulate plasma membrane (PM) fluidity by increasing the phosphatidylethanolamine (PE) level in the PM. BLTP2 localizes to endoplasmic reticulum (ER)-PM contact sites34, 5, suggesting it transports PE from the ER to the PM. We find BLTP2 works in parallel with another pathway that regulates intracellular PE distribution and PM fluidity6, 7. BLTP2 expression correlates with breast cancer aggressiveness8-10. We found BLTP2 facilitates growth of a human cancer cell line and sustains its aggressiveness in an in vivo model of metastasis, suggesting maintenance of PM fluidity by BLTP2 may be critical for tumorigenesis in humans.
Collapse
Affiliation(s)
- Subhrajit Banerjee
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Shruthi Madhugiri
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emma Johnson
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao-Wen Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Toulmay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William A Prinz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Pore AA, Kamyabi N, Bithi SS, Ahmmed SM, Vanapalli SA. Single-Cell Proliferation Microfluidic Device for High Throughput Investigation of Replicative Potential and Drug Resistance of Cancer Cells. Cell Mol Bioeng 2023; 16:443-457. [PMID: 38099214 PMCID: PMC10716102 DOI: 10.1007/s12195-023-00773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/10/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Cell proliferation represents a major hallmark of cancer biology, and manifests itself in the assessment of tumor growth, drug resistance and metastasis. Tracking cell proliferation or cell fate at the single-cell level can reveal phenotypic heterogeneity. However, characterization of cell proliferation is typically done in bulk assays which does not inform on cells that can proliferate under given environmental perturbations. Thus, there is a need for single-cell approaches that allow longitudinal tracking of the fate of a large number of individual cells to reveal diverse phenotypes. Methods We fabricated a new microfluidic architecture for high efficiency capture of single tumor cells, with the capacity to monitor cell divisions across multiple daughter cells. This single-cell proliferation (SCP) device enabled the quantification of the fate of more than 1000 individual cancer cells longitudinally, allowing comprehensive profiling of the phenotypic heterogeneity that would be otherwise masked in standard cell proliferation assays. We characterized the efficiency of single cell capture and demonstrated the utility of the SCP device by exposing MCF-7 breast tumor cells to different doses of the chemotherapeutic agent doxorubicin. Results The single cell trapping efficiency of the SCP device was found to be ~ 85%. At the low doses of doxorubicin (0.01 µM, 0.001 µM, 0.0001 µM), we observed that 50-80% of the drug-treated cells had undergone proliferation, and less than 10% of the cells do not proliferate. Additionally, we demonstrated the potential of the SCP device in circulating tumor cell applications where minimizing target cell loss is critical. We showed selective capture of breast tumor cells from a binary mixture of cells (tumor cells and white blood cells) that was isolated from blood processing. We successfully characterized the proliferation statistics of these captured cells despite their extremely low counts in the original binary suspension. Conclusions The SCP device has significant potential for cancer research with the ability to quantify proliferation statistics of individual tumor cells, opening new avenues of investigation ranging from evaluating drug resistance of anti-cancer compounds to monitoring the replicative potential of patient-derived cells. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00773-z.
Collapse
Affiliation(s)
- Adity A. Pore
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| | - Nabiollah Kamyabi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: 10x Genomics, Pleasanton, CA USA
| | - Swastika S. Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: College of Engineering, West Texas A&M University, Canyon, TX USA
| | - Shamim M. Ahmmed
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
- Present Address: Manufacturing Integration Engineer, Intel Corporation, Hillsboro, OR USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX USA
| |
Collapse
|
3
|
Grafals-Ruiz N, Sánchez-Álvarez AO, Santana-Rivera Y, Lozada-Delgado EL, Rabelo-Fernandez RJ, Rios-Vicil CI, Valiyeva F, Vivas-Mejia PE. MicroRNA-92b targets tumor suppressor gene FBXW7 in glioblastoma. Front Oncol 2023; 13:1249649. [PMID: 37752997 PMCID: PMC10518455 DOI: 10.3389/fonc.2023.1249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive and lethal primary brain tumor. Despite limited treatment options, the overall survival of GBM patients has shown minimal improvement over the past two decades. Factors such as delayed cancer diagnosis, tumor heterogeneity, cancer stem cell survival, infiltrative nature of GBM cells, metabolic reprogramming, and development of therapy resistance contribute to treatment failure. To address these challenges, multitargeted therapies are urgently needed for improved GBM treatment outcomes. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Dysregulated miRNAs have been identified in GBM, playing roles in tumor initiation, progression, and maintenance. Among these miRNAs, miR-92b (miRNA-92b-3p) has been found to be overexpressed in various cancers, including GBM. However, the specific target genes of miR-92b and its therapeutic potential in GBM remain poorly explored. Methods Samples encompassed T98G, U87, and A172 human GBM cell lines, GBM tumors from Puerto Rican patients, and murine tumors. In-situ hybridization (ISH) assessed miR-92b expression in patient tumors. Transient and stable transfections modified miR-92b levels in GBM cell lines. Real-time PCR gauged gene expressions. Caspase 3 and Trypan Blue assays evaluated apoptosis and viability. Bioinformatics tools (TargetScanHuman 8.0, miRDB, Diana tools, miRWalk) predicted targets. Luciferase assays and Western Blots validated miRNA-target interactions. A subcutaneous GBM Xenograft mouse model received intraperitoneal NC-OMIs or miR92b-OMIs encapsulated in liposomes, three-times per week for two weeks. Analysis utilized GraphPad Prism 8; statistical significance was assessed using 2-tailed, unpaired Student's t-test and two-way ANOVA as required. Results This study investigated the expression of miR-92b in GBM tumors compared to normal brain tissue samples, revealing a significant upregulation. Inhibition of miR-92b using oligonucleotide microRNA inhibitors (OMIs) suppressed GBM cell growth, migration, and induced apoptosis, while ectopic expression of miR-92b yielded opposite effects. Systemic administration of liposomal-miR92b-OMIs in GBM xenograft mice resulted in reductions in tumor volume and weight. Subsequent experiments identified F-Box and WD Repeat Domain Containing 7 (FBXW7) as a direct target gene of miR-92b in GBM cells. Discussion FBXW7 acts as a tumor suppressor gene in various cancer types, and analysis of patient data demonstrated that GBM patients with higher FBXW7 mRNA levels had significantly better overall survival compared to those with lower levels. Taken together, our findings suggest that the dysregulated expression of miR-92b in GBM contributes to tumor progression by targeting FBXW7. These results highlight the potential of miR-92b as a therapeutic target for GBM. Further exploration and development of miR-92b-targeted therapies may offer a novel approach to improve treatment outcomes in GBM patients.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Yasmarie Santana-Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Dentistry School, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L. Lozada-Delgado
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert J. Rabelo-Fernandez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
4
|
Sánchez-Ceinos J, Guzmán-Ruiz R, Rangel-Zúñiga OA, López-Alcalá J, Moreno-Caño E, Del Río-Moreno M, Romero-Cabrera JL, Pérez-Martínez P, Maymo-Masip E, Vendrell J, Fernández-Veledo S, Fernández-Real JM, Laurencikiene J, Rydén M, Membrives A, Luque RM, López-Miranda J, Malagón MM. Impaired mRNA splicing and proteostasis in preadipocytes in obesity-related metabolic disease. eLife 2021; 10:65996. [PMID: 34545810 PMCID: PMC8545398 DOI: 10.7554/elife.65996] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Preadipocytes are crucial for healthy adipose tissue expansion. Preadipocyte differentiation is altered in obese individuals, which has been proposed to contribute to obesity-associated metabolic disturbances. Here, we aimed at identifying the pathogenic processes underlying impaired adipocyte differentiation in obese individuals with insulin resistance (IR)/type 2 diabetes (T2D). We report that down-regulation of a key member of the major spliceosome, PRFP8/PRP8, as observed in IR/T2D preadipocytes from subcutaneous (SC) fat, prevented adipogenesis by altering both the expression and splicing patterns of adipogenic transcription factors and lipid droplet-related proteins, while adipocyte differentiation was restored upon recovery of PRFP8/PRP8 normal levels. Adipocyte differentiation was also compromised under conditions of endoplasmic reticulum (ER)-associated protein degradation (ERAD) hyperactivation, as occurs in SC and omental (OM) preadipocytes in IR/T2D obesity. Thus, targeting mRNA splicing and ER proteostasis in preadipocytes could improve adipose tissue function and thus contribute to metabolic health in obese individuals.
Collapse
Affiliation(s)
- Julia Sánchez-Ceinos
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Oriol Alberto Rangel-Zúñiga
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, Department of Internal Medicine, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Moreno-Caño
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Mercedes Del Río-Moreno
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,OncObesity and Metabolism Group. Department of Cell Biology, Physiology and Immunology, IMIBIC/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - Juan Luis Romero-Cabrera
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Elsa Maymo-Masip
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgil, Tarragona, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgil, Tarragona, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili Universitat Rovira i Virgil, Tarragona, Spain
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, and Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Jurga Laurencikiene
- Lipid Laboratory. Department of Medicine Huddinge/Karolinska Institute (KI)/Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Rydén
- Lipid Laboratory. Department of Medicine Huddinge/Karolinska Institute (KI)/Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Membrives
- Unidad de Gestión Clínica de Cirugía General y Digestivo, Sección de Obesidad, Reina Sofia University Hospital, Córdoba, Spain
| | - Raul M Luque
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,OncObesity and Metabolism Group. Department of Cell Biology, Physiology and Immunology, IMIBIC/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, Department of Internal Medicine, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Effects of Sevoflurane on Lewis Lung Carcinoma Cell Proliferation In Vivo and In Vitro. ACTA ACUST UNITED AC 2021; 57:medicina57010045. [PMID: 33430347 PMCID: PMC7825752 DOI: 10.3390/medicina57010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Background and objectives: There are several studies that sevoflurane could enhance proliferation of cancer cells, while others suggest no effect on clinical outcome. We conducted in vivo and in vitro experiments to investigate the effects of sevoflurane, a volatile anesthetic, on proliferation and outcomes of Lewis lung carcinoma (LLC) cells. Materials and Methods: A total of 37 mice were injected with LLC cells to compare the tumor size and survival of the sevoflurane exposed group (sevo group) and control group. The sevo group was exposed to 2% sevoflurane and 4 L/min of oxygen for 1 h per day 3 times per week, and the control group was exposed only to 4 L/min of oxygen. In vitro study, 12 plates incubated with LCC cells. 6 plates were exposed to 2% sevoflurane for 1 hr/day for 3 days and 6 plates were not exposed, and cell proliferation was compared after 3 days. Results: There were no significant differences in survival or tumor size between mice exposed to sevoflurane and control mice (survival: 29.06 ± 4.45 vs. 28.76 ± 3.75, p = 0.836; tumor size: 0.75 (0.41–1.02) vs. 0.49 (0.11–0.79), p = 0.153). However, in vitro study, the proliferation of LLC cells exposed to sevoflurane increased by 9.2% compared to the control group (p = 0.018). Conclusions: Sevoflurane (2 vol%) exposure could promote proliferation of LLC cells in vitro environment, but may not affect proliferation of LLC cells in vivo environment. These results suggest that in vitro studies on the effects of anesthetics on cancer may differ from those of in vivo or clinical studies.
Collapse
|
6
|
Sphingosine-1-phosphate receptor modulator FTY720 attenuates experimental myeloperoxidase-ANCA vasculitis in a T cell-dependent manner. Clin Sci (Lond) 2020; 134:1475-1489. [PMID: 32538435 DOI: 10.1042/cs20200497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lysosphingolipid derived from the metabolism of plasma membrane lipids. The interaction between S1P and its ubiquitously expressed G-protein-coupled receptors (S1PR1-5) is crucial in many pathophysiological processes. Emerging evidence suggested a potential role for S1P receptors in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). In the present study, we investigated the effects of three different S1P receptors modulators (FTY720, SEW2871 and TY52156) in a recognized rat model of experimental autoimmune vasculitis (EAV). The effects of treatments were evaluated with clinico-pathological parameters including hematuria, proteinuria, crescent formation, pulmonary hemorrhage, etc. In vitro functional studies were performed in a Jurkat T-cell line following stimulations of serum from myeloperoxidase-AAV patients. We found that only the FTY720 treatment significantly alleviated hematuria and proteinuria, and diminished glomerular crescent formation, renal tubulointerstitial lesions and pulmonary hemorrhage in EAV. The attenuation was accompanied by less renal T-cell infiltration, up-regulated mRNA of S1PR1 and down-regulated IL-1β in kidneys, but not altered circulating ANCA levels, suggesting that the therapeutic effects of FTY720 were B-cell independent. Further in vitro studies demonstrated that FTY720 incubation could significantly inhibit the proliferation, adhesion, and migration, and increase apoptosis of T cells. In conclusion, the S1P modulator FTY720 could attenuate EAV through the reduction and inhibition of T cells, which might become a novel treatment of ANCA-associated vasculitis.
Collapse
|
7
|
Puente-Marin S, Nombela I, Chico V, Ciordia S, Mena MC, Perez LG, Coll J, Ortega-Villaizan MDM. Potential Role of Rainbow Trout Erythrocytes as Mediators in the Immune Response Induced by a DNA Vaccine in Fish. Vaccines (Basel) 2019; 7:E60. [PMID: 31277329 PMCID: PMC6789471 DOI: 10.3390/vaccines7030060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, fish nucleated red blood cells (RBCs) have been implicated in the response against viral infections. We have demonstrated that rainbow trout RBCs can express the antigen encoded by a DNA vaccine against viral hemorrhagic septicemia virus (VHSV) and mount an immune response to the antigen in vitro. In this manuscript, we show, for the first time, the role of RBCs in the immune response triggered by DNA immunization of rainbow trout with glycoprotein G of VHSV (GVHSV). Transcriptomic and proteomic profiles of RBCs revealed genes and proteins involved in antigen processing and presentation of exogenous peptide antigen via MHC class I, the Fc receptor signaling pathway, the autophagy pathway, and the activation of the innate immune response, among others. On the other hand, GVHSV-transfected RBCs induce specific antibodies against VHSV in the serum of rainbow trout which shows that RBCs expressing a DNA vaccine are able to elicit a humoral response. These results open a new direction in the research of vaccination strategies for fish since rainbow trout RBCs actively participate in the innate and adaptive immune response in DNA vaccination. Based on our findings, we suggest the use of RBCs as target cells or carriers for the future design of novel vaccine strategies.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Luis Garcia Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Biotecnología, 28040 Madrid, Spain
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| |
Collapse
|
8
|
Stevens LE, Arnal-Estapé A, Nguyen DX. Pre-Conditioning the Airways of Mice with Bleomycin Increases the Efficiency of Orthotopic Lung Cancer Cell Engraftment. J Vis Exp 2018:56650. [PMID: 30010648 PMCID: PMC6102009 DOI: 10.3791/56650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lung cancer is a deadly treatment refractory disease that is biologically heterogeneous. To understand and effectively treat the full clinical spectrum of thoracic malignancies, additional animal models that can recapitulate diverse human lung cancer subtypes and stages are needed. Allograft or xenograft models are versatile and enable the quantification of tumorigenic capacity in vivo, using malignant cells of either murine or human origin. However, previously described methods of lung cancer cell engraftment have been performed in non-physiological sites, such as the flank of mice, due to the inefficiency of orthotopic transplantation of cells into the lungs. In this study, we describe a method to enhance orthotopic lung cancer cell engraftment by pre-conditioning the airways of mice with the fibrosis inducing agent bleomycin. As a proof-of-concept experiment, we applied this approach to engraft tumor cells of the lung adenocarcinoma subtype, obtained from either mouse or human sources, into various strains of mice. We demonstrate that injuring the airways with bleomycin prior to tumor cell injection increases the engraftment of tumor cells from 0-17% to 71-100%. Significantly, this method enhanced lung tumor incidence and subsequent outgrowth using different models and mouse strains. In addition, engrafted lung cancer cells disseminate from the lungs into relevant distant organs. Thus, we provide a protocol that can be used to establish and maintain new orthotopic models of lung cancer with limiting amounts of cells or biospecimen and to quantitatively assess the tumorigenic capacity of lung cancer cells in physiologically relevant settings.
Collapse
Affiliation(s)
| | | | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine; Department of Medical Oncology, Yale University School of Medicine;
| |
Collapse
|
9
|
Bolgioni AF, Vittoria MA, Ganem NJ. Long-term Live-cell Imaging to Assess Cell Fate in Response to Paclitaxel. J Vis Exp 2018. [PMID: 29806834 DOI: 10.3791/57383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Live-cell imaging is a powerful technique that can be used to directly visualize biological phenomena in single cells over extended periods of time. Over the past decade, new and innovative technologies have greatly enhanced the practicality of live-cell imaging. Cells can now be kept in focus and continuously imaged over several days while maintained under 37 °C and 5% CO2 cell culture conditions. Moreover, multiple fields of view representing different experimental conditions can be acquired simultaneously, thus providing high-throughput experimental data. Live-cell imaging provides a significant advantage over fixed-cell imaging by allowing for the direct visualization and temporal quantitation of dynamic cellular events. Live-cell imaging can also identify variation in the behavior of single cells that would otherwise have been missed using population-based assays. Here, we describe live-cell imaging protocols to assess cell fate decisions following treatment with the anti-mitotic drug paclitaxel. We demonstrate methods to visualize whether mitotically arrested cells die directly from mitosis or slip back into interphase. We also describe how the fluorescent ubiquitination-based cell cycle indicator (FUCCI) system can be used to assess the fraction of interphase cells born from mitotic slippage that are capable of re-entering the cell cycle. Finally, we describe a live-cell imaging method to identify nuclear envelope rupture events.
Collapse
Affiliation(s)
- Amanda F Bolgioni
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine
| | - Marc A Vittoria
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine
| | - Neil J Ganem
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine; Department of Medicine, Section of Hematology and Oncology, Boston University School of Medicine;
| |
Collapse
|