1
|
Janssen A, Buschang PH, Tadlock LP, Kesterke MJ, Jing Y. The effects of dietary loading on the transdifferentiation of condylar chondrocytes. Am J Orthod Dentofacial Orthop 2024; 165:697-710. [PMID: 38573296 DOI: 10.1016/j.ajodo.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transdifferentiation of chondrocytes into bone cells explains most condylar growth during prenatal and early postnatal stages, but the mechanisms regulating chondrocyte transdifferentiation during late postnatal growth remain unknown. This study aimed to quantify the effects of dietary loading on chondrocyte-derived osteogenesis during late postnatal condylar growth. METHODS Two compound mouse lines were used to trace the fate of chondrocyte lineage in vivo. Twelve 3-week-old male Aggrecan-CreERT2 (AcanLineage); R26RTdTomato; 2.3 Col10a1-GFP and twelve 3-week-old male Col10a1-Cre (Col10a1Lineage); R26RTdTomato; 2.3Col1a1-GFP were randomly divided into experimental (soft-food diet, n = 6) and control (hard-food diet, n = 6) groups and kept for 6 weeks. One time, tamoxifen injections were given to AcanLineage mice at 3 weeks. Radiographic, microcomputed tomographic, and histomorphometric analyses were performed. RESULTS Radiologic analysis showed that mice with a soft-food diet had smaller mandible lengths as well as decreased bone volume and density for their condylar process. Histologically, mice with soft diets had reduced activity in chondrocyte proliferation and maturation compared with the controls. Cell lineage tracing results showed the number of AcanLineage-derived bone cells (293.8 ± 39.8 vs 207.1 ± 44.6; P = 0.005), as well as total bone cells (445.6 ± 31.7 vs 360.7 ± 46.9; P = 0.004), was significantly higher in the hard-diet group than in the soft-diet group, whereas the number of non-AcanLineage-derived bone cells was not significantly different among groups (P = 0.938). Col10a1Lineage mice showed the same trend. CONCLUSIONS Dietary loading directly affects condyle chondrogenesis and chondrocyte transdifferentiation, which alters the extent of condylar growth and remodeling.
Collapse
Affiliation(s)
- Abbey Janssen
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | - Peter H Buschang
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | - Larry P Tadlock
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | | | - Yan Jing
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex.
| |
Collapse
|
2
|
The Emerging Role of Cell Transdifferentiation in Skeletal Development and Diseases. Int J Mol Sci 2022; 23:ijms23115974. [PMID: 35682655 PMCID: PMC9180549 DOI: 10.3390/ijms23115974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.
Collapse
|
3
|
Cell Lineage Tracing: Colocalization of Cell Lineage Markers with a Fluorescent Reporter. Methods Mol Biol 2021; 2230:325-335. [PMID: 33197022 DOI: 10.1007/978-1-0716-1028-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell lineage tracing, an old technique which originated in the nineteenth century, regains popularity and relevance due to introduction of a more sensitive tomato fluorescent protein under the control of a ubiquitous promoter (Rosa 26 gene). In addition, various tissue specific CreERT2 mouse lines are widely available, making cell lineage tracing studies more specific and powerful. In this protocol, we provide a practical guide for researchers to map progeny of specific cells such as chondrocytes during development using a fluorescent reporter (tomato, red) and multiple chondrocyte Cre lines. Further, we provide valuable examples in which these tracing lines, combined with a bone reporter mouse line (2.3 Col 1a1-GFP) or costained with different immunofluorescent proteins, revealed how a chondrocyte transdifferentiates into a bone cell in vivo.
Collapse
|
4
|
Ma C, Jing Y, Li H, Wang K, Wang Z, Xu C, Sun X, Kaji D, Han X, Huang A, Feng J. Scx Lin cells directly form a subset of chondrocytes in temporomandibular joint that are sharply increased in Dmp1-null mice. Bone 2021; 142:115687. [PMID: 33059101 PMCID: PMC7749445 DOI: 10.1016/j.bone.2020.115687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth. Our data showed a progressive differentiation of Scx lineage cells started at tendon and the fibrous layer, to cells at the prechondroblasts (Sox9 -/Col I +), and then to cells at the chondrocytic layer (Sox9 +/Col I -). Importantly, the Scx + chondrocytes remained as "permanent" chondrocytes to maintain cartilage mass with no further cell trandifferentiation to bone cells. This notion was substantiated in an assessment of these cells in Dmp1 -null mice (a hypophosphatemic rickets model), where there was a significant increase in the number of Scx lineage cells in response to hypophosphatemia. In addition, we showed the origin of disc, which is derived from Scx + cells. Thus, we propose Scx lineage cells play an important role in TMJ postnatal growth by forming the disc and a new subset of Scx + chondrocytes that do not undergo osteogenesis as the Scx - chondrocytes and are sensitive to the level of phosphorous.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunmei Xu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaolin Sun
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA; Zhongshan Affiliated Hospital of Dalian University, Dalian, China
| | - Deepak Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xianglong Han
- Department of Orthodontics & Pediatric Dentistry, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Alice Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jian Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| |
Collapse
|
5
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
6
|
Li H, Jing Y, Zhang R, Zhang Q, Wang J, Martin A, Feng JQ. Hypophosphatemic rickets accelerate chondrogenesis and cell trans-differentiation from TMJ chondrocytes into bone cells via a sharp increase in β-catenin. Bone 2020; 131:115151. [PMID: 31751752 PMCID: PMC6930687 DOI: 10.1016/j.bone.2019.115151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023]
Abstract
Dentin matrix protein 1 (DMP1) is primarily expressed in osteocytes, although a low level of DMP1 is also detected in chondrocytes. Removing Dmp1 in mice or a mutation in humans leads to hypophosphatemic rickets (identical to X-linked hypophosphatemia). The deformed skeletons were currently thought to be a consequence of an inhibition of chondrogenesis (leading to an accumulation of hypertrophic chondrocytes and a failure in the replacement of cartilage by bone). To precisely study the mechanisms by which DMP1 and phosphorus control temporomandibular condyle formation, we first showed severe malformed condylar phenotypes in Dmp1-null mice (great expansions of deformed cartilage layers and subchondral bone), which worst as aging. Next, we excluded the direct role of DMP1 in condylar hypertrophic-chondrogenesis by conditionally deleting Dmp1 in hypertrophic chondrocytes using Col10a1-Cre and Dmp1 loxP mice (displaying no apparent phosphorous changes and condylar phenotype). To address the mechanism by which the onset of endochondral phenotypes takes place, we generated two sets of tracing lines in the Dmp1 KO background: AggrecanCreERT2-ROSA-tdTomato and Col 10a1-Cre-ROSA-tdTomato, respectively. Both tracing lines displayed an acceleration of chondrogenesis and cell trans-differentiation from chondrocytes into bone cells in the Dmp1 KO. Next, we showed that administrations of neutralizing fibroblast growth factor 23 (FGF23) antibodies in Dmp1-null mice restored hypophosphatemic condylar cartilage phenotypes. In further addressing the rescue mechanism, we generated compound mice containing Col10a1-Cre with ROSA-tdTomato and Dmp1 KO lines with and without a high Pi diet starting at day 10 for 39 days. We demonstrated that hypophosphatemia leads to an acceleration of chondrogenesis and trans-differentiation of chondrocytes to bone cells, which were largely restored under a high Pi diet. Finally, we identified the causative molecule (β-catenin). Together, this study demonstrates that the Dmp1-null caused hypophosphatemia, leading to acceleration (instead of inhibition) of chondrogenesis and bone trans-differentiation from chondrocytes but inhibition of bone cell maturation due to a sharp increase in β-catenin. These findings will aid in the future treatment of hypophosphatemic rickets with FGF23 neutralizing antibodies.
Collapse
Affiliation(s)
- Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Rong Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; Faculty of Medicine, Northwest University, #229 Taibai North Rd, Xi'an, Shaanxi, 710069, China
| | - Qi Zhang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; Laboratory of Oral Biomedical Science and Translational Medicine, Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Aline Martin
- Center for Translational Metabolism and Health, Division of Nephrology/Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
7
|
Xie X, Wang J, Wang K, Li C, Zhang S, Jing D, Xu C, Wang X, Zhao H, Feng J. Axin2 +-Mesenchymal PDL Cells, Instead of K14 + Epithelial Cells, Play a Key Role in Rapid Cementum Growth. J Dent Res 2019; 98:1262-1270. [PMID: 31454276 PMCID: PMC6755721 DOI: 10.1177/0022034519871021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To date, attempts to regenerate functional periodontal tissues (including cementum) are largely unsuccessful due to a lack of full understanding about the cellular origin (epithelial or mesenchymal cells) essential for root cementum growth. To address this issue, we first identified a rapid cementum growth window from the ages of postnatal day 28 (P28) to P56. Next, we showed that expression patterns of Axin2 and β-catenin within cementum-forming periodontal ligament (PDL) cells are negatively associated with rapid cementum growth. Furthermore, cell lineage tracing studies revealed that the Axin2+-mesenchymal PDL cells and their progeny rapidly expand and directly contribute to postnatal acellular and cellular cementum growth. In contrast, the number of K14+ epithelial cells, which were initially active at early stages of development, was reduced during rapid cementum formation from P28 to P56. The in vivo cell ablation of these Axin2+ cells using Axin2CreERT2/+; R26RDTA/+ mice led to severe cementum hypoplasia, whereas constitutive activation of β-catenin in the Axin2+ cells resulted in an acceleration in cellular cementogenesis plus a transition from acellular cementum to cellular cementum. Thus, we conclude that Axin2+-mesenchymal PDL cells, instead of K14+ epithelial cells, significantly contribute to rapid cementum growth.
Collapse
Affiliation(s)
- X. Xie
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Periodontics,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - J. Wang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Periodontics,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - K. Wang
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - C. Li
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
- Department of Oral Implantology, School
and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center
of Tooth Restoration and Regeneration, Shanghai, China
| | - S. Zhang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Periodontics,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - D. Jing
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Periodontics,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - C. Xu
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Periodontics,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - X. Wang
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - H. Zhao
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| | - J.Q. Feng
- Department of Biomedical Sciences, Texas
A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
8
|
Application of Cell Lineage Tracing Combined with Immunofluorescence in the Study of Dentinogenesis. Methods Mol Biol 2019; 1922:39-48. [PMID: 30838563 DOI: 10.1007/978-1-4939-9012-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The cell lineage tracing system has been used predominantly in developmental biology studies. The Cre recombinase allows for the activation of the reporter in a specific cell line and all progeny. In this protocol, we will introduce how the cell lineage tracing technique can be performed in the investigation of dentinogenesis by using Gli1-CreERT2; R26RTomato compound mice. Moreover, we combined cell lineage tracing in conjunction with immunofluorescence-to further define cell fate by analyzing the expression of specific cell markers for odontoblasts. This combination not only broadens the application of cell lineage tracing but also simplifies the generation of compound mice. More importantly, the number, location, and differentiation status of parent cell progeny can be displayed simultaneously, providing more information than cell lineage tracing or immunofluorescence alone. In conclusion, the co-application of cell lineage tracing technique and immunofluorescence is a powerful tool for investigating cell biology in the field of dentinogenesis and tooth development.
Collapse
|
9
|
Liu T, Wang J, Xie X, Wang K, Sui T, Liu D, Lai L, Zhao H, Li Z, Feng JQ. DMP1 Ablation in the Rabbit Results in Mineralization Defects and Abnormalities in Haversian Canal/Osteon Microarchitecture. J Bone Miner Res 2019; 34:1115-1128. [PMID: 30827034 DOI: 10.1002/jbmr.3683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/05/2023]
Abstract
DMP1 (dentin matrix protein 1) is an extracellular matrix protein highly expressed in bones. Studies of Dmp1 knockout (KO) mice led to the discovery of a rare autosomal recessive form of hypophosphatemic rickets (ARHR) caused by DMP1 mutations. However, there are limitations for using this mouse model to study ARHR, including a lack of Haversian canals and osteons (that occurs only in large mammalian bones), high levels of fibroblast growth factor 23 (FGF23), and PTH, in comparison with a moderate elevation of FGF23 and unchanged PTH in human ARHR patients. To better understand this rare disease, we deleted the DMP1 gene in rabbit using CRISPR/Cas9. This rabbit model recapitulated many features of human ARHR, such as the rachitic rosary (expansion of the anterior rib ends at the costochondral junctions), moderately increased FGF23, and normal PTH levels, as well as severe defects in bone mineralization. Unexpectedly, all DMP1 KO rabbits died by postnatal week 8. They developed a severe bone microarchitecture defect: a major increase in the central canal areas of osteons, concurrent with massive accumulation of osteoid throughout all bone matrix (a defect in mineralization), suggesting a new paradigm, where rickets is caused by a combination of a defect in bone microarchitecture and a failure in mineralization. Furthermore, a study of DMP1 KO bones found accelerated chondrogenesis, whereas ARHR has commonly been thought to be involved in reduced chondrogenesis. Our findings with newly developed DMP1 KO rabbits suggest a revised understanding of the mechanism underlying ARHR. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tingjun Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jun Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Di Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hu Zhao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
10
|
Bíliková P, Švandová E, Veselá B, Doubek J, Poliard A, Matalová E. Coupling Activation of Pro-Apoptotic Caspases With Autophagy in the
Meckel´s Cartilage. Physiol Res 2018; 68:135-140. [DOI: 10.33549/physiolres.933947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian Meckel´s cartilage is a temporary structure associated with mandible development. Notably, its elimination is not executed by apoptosis, and autophagy was suggested as the major mechanism. Simultaneous reports point to pro-apoptotic caspases as novel participants in autophagic pathways in general. The aim of this research was to find out whether activation of pro-apoptotic caspases (-2, -3, -6, -7, -8 and -9) was associated with autophagy of the Meckel´s cartilage chondrocytes. Active caspases were examined in serial histological sections of mouse mandible using immunodetection and were correlated with incidence of autophagy based on Beclin-1 expression. Caspase-2 and caspase-8 were found in Beclin-1 positive regions, whereas caspase-3, -6, -7 and -9 were not present. Caspase-8 was further correlated with Fas/FasL and HIF-1alpha, potential triggers for its activation. Some Fas and FasL positivity was observed in the chondrocytes but caspase-8 activation was found also in FasL deficient cartilage. HIF-1alpha was abundantly present in the hypertrophic chondrocytes. Taken together, caspase-8 activation in the Meckel´s cartilage was demonstrated for the first time. Caspase-8 and caspase-2 were the only pro-apoptotic caspases detected in the Beclin-1 positive segment of the cartilage. Activation of caspase-8 appears FasL/Fas independent but may be switched on by HIF-1alpha.
Collapse
Affiliation(s)
- P. Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - E. Švandová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - B. Veselá
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - J. Doubek
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A. Poliard
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Université Paris Descartes, France
| | - E Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Zheng J, Chen S, Albiero M, Vieira G, Wang J, Feng J, Graves D. Diabetes Activates Periodontal Ligament Fibroblasts via NF-κB In Vivo. J Dent Res 2018; 97:580-588. [PMID: 29439598 PMCID: PMC5958371 DOI: 10.1177/0022034518755697] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus increases periodontitis and pathogenicity of the oral microbiome. To further understand mechanisms through which diabetes affects periodontitis, we examined its impact on periodontal ligament fibroblasts in vivo and in vitro. Periodontitis was induced by inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in normoglycemic and diabetic mice. Diabetes, induced by multiple low-dose injections of streptozotocin increased osteoclast numbers and recruitment of neutrophils to the periodontal ligament, which could be accounted for by increased CXC motif chemokine 2 (CXCL2) and receptor activator of nuclear factor kappa B ligand (RANKL) expression by these cells. Diabetes also stimulated a significant increase in nuclear factor kappa B (NF-κB) expression and activation in periodontal ligament (PDL) fibroblasts. Surprisingly, we found that PDL fibroblasts express a 2.3-kb regulatory unit of Col1α1 (collagen type 1, alpha 1) promoter typical of osteoblasts. Diabetes-enhanced CXCL2 and RANKL expression in PDL fibroblasts was rescued in transgenic mice with lineage-specific NF-κB inhibition controlled by this regulatory element. In vitro, high glucose increased NF-κB transcriptional activity, NF-κB nuclear localization, and RANKL expression in PDL fibroblasts, which was reduced by NF-κB inhibition. Thus, diabetes induces changes in PDL fibroblast gene expression that can enhance neutrophil recruitment and bone resorption, which may be explained by high glucose-induced NF-κB activation. Furthermore, PDL fibroblasts express a regulatory element in vivo that is typical of committed osteoblasts.
Collapse
Affiliation(s)
- J. Zheng
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S. Chen
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Stomatology, Beijing
Anzhen Hospital, Capital Medical University, Beijing, China
| | - M.L. Albiero
- Department of Prosthodontics and
Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba,
Brazil
| | - G.H.A. Vieira
- Department of Oral Surgery and
Periodontology, Ribeirão Preto School of Dentistry, University of São Paulo,
Ribeirão Preto, Brazil
| | - J. Wang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu, China
- Department of Biomedical Sciences,
College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - J.Q. Feng
- Department of Biomedical Sciences,
College of Dentistry, Texas A&M University, Dallas, TX, USA
| | - D.T. Graves
- Department of Periodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Janečková E, Bíliková P, Matalová E. Osteogenic Potential of Caspases Related to Endochondral Ossification. J Histochem Cytochem 2018; 66:47-58. [PMID: 29091523 PMCID: PMC5761947 DOI: 10.1369/0022155417739283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/06/2017] [Indexed: 01/04/2023] Open
Abstract
Caspases have functions particularly in apoptosis and inflammation. Increasing evidence indicates novel roles of these proteases in cell differentiation, including those involved in osteogenesis. This investigation provides a complex screening of osteogenic markers affected by pan caspase inhibition in micromass cultures derived from mouse forelimbs. PCR Array analysis showed significant alterations in expression of 49 osteogenic genes after 7 days of inhibition. The largest change was a decrease in CD36 expression, which was confirmed at organ level by caspase inhibition in cultured mouse ulnae followed by CD36 immunohistochemical analysis. So far, available data point to osteogenic potential of pro-apoptotic caspases. Therefore, the expression of pro-apoptotic caspases (-3, -6, -7, -8, -9) within the growth plate of mouse forelimbs at the stage where the individual zones are clearly apparent was studied. Caspase-9 was reported in the growth plate for the first time as well as caspase-6 and -7 in the resting zone, caspase-7 in the proliferation, and caspase-6 and -8 in the ossification zone. For all caspases, there was a gradient increase in activation toward the ossification zone. The distribution of staining varied significantly from that of apoptotic cells, and thus, the results further support non-apoptotic participation of caspases in osteogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic
| |
Collapse
|
13
|
Jing Y, Jing J, Wang K, Chan K, Harris SE, Hinton RJ, Feng JQ. Vital Roles of β-catenin in Trans-differentiation of Chondrocytes to Bone Cells. Int J Biol Sci 2018; 14:1-9. [PMID: 29483820 PMCID: PMC5821044 DOI: 10.7150/ijbs.23165] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 02/05/2023] Open
Abstract
A recent breakthrough showing that direct trans-differentiation of chondrocytes into bone cells commonly occurs during endochondral bone formation in the growth plate, articular cartilage, and mandibular condylar cartilage suggests that chondrogenesis and osteogenesis are likely one continuous biological process instead of two separate processes. Yet, gene regulation of this cell transformation is largely unclear. Here, we employed cartilage-specific β-catenin loss-of-function (β-catenin fx/fx ) and gain-of-function (β-catenin fx(exon3)/ fx(exon3) ) models in the R26RTomato background (for better tracing the cell fate of chondrocytes) to study the role of β-catenin in cell trans-differentiation. Using histological, immunohistochemical, and radiological methods combined with cell lineage tracing techniques, we showed that deletion of β-catenin by either Acan-CreERT2 or Col10a1-Cre resulted in greatly reduced cell trans-differentiation with a significant decrease in subchondral bone volume during mandibular condylar growth. Molecular studies demonstrated severe defects in cell proliferation and differentiation in both chondrocytes and bone cells. The gain of function studies (constitutive activation of β-catenin with Acan-CreERT2 at ages of postnatal day 7, 4-weeks and 6-months) led to more bone cell trans-differentiation of chondrocytes in the mandibular condyle due to increased proliferation and accelerated chondrocyte differentiation with incipient osteogenic changes within the cartilage matrix, resulting in an increased volume of poorly-formed immature subchondral bone. These results support the notion that chondrogenesis and osteogenesis are one continuous process, in which β-catenin signaling plays an essential role in the cell trans-differentiation of chondrocytes into bone cells during mandibular condylar development and growth.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Junjun Jing
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 610041
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Kevin Chan
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert J Hinton
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
14
|
Rashid H, Chen H, Hassan Q, Javed A. Dwarfism in homozygous Agc1 CreERT mice is associated with decreased expression of aggrecan. Genesis 2017; 55. [PMID: 28921880 DOI: 10.1002/dvg.23070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, AgcCre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the AgcCre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc+/Cre ), and Cre-homozygous (AgcCre/Cre ) littermates were indistinguishable at birth. However, by 1-month, AgcCre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc+/Cre littermates, long bones and vertebrae were shorter in AgcCre/Cre mice. Histological analysis of AgcCre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of AgcCre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of AgcCre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in AgcCre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc+/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc+/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue.
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
15
|
Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017. [PMID: 28855706 DOI: 10.1038/s41598‐017‐10048‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-Cre ERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
|
16
|
Jing Y, Jing J, Ye L, Liu X, Harris SE, Hinton RJ, Feng JQ. Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017; 7:10020. [PMID: 28855706 PMCID: PMC5577112 DOI: 10.1038/s41598-017-10048-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-CreERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| | - Junjun Jing
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,Department of Dental Research, Naval Post-Graduate Dental School, Navy Medicine Professional Development Center Walter Reed National Military Medical Center; Postgraduate Dental College Uniformed Services, University of the Health Sciences, 8955 Wood Road Bethesda, MD, 20889, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert J Hinton
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|