1
|
Bilenca A, Prevedel R, Scarcelli G. Current state of stimulated Brillouin scattering microscopy for the life sciences. JPHYS PHOTONICS 2024; 6:032001. [PMID: 38939757 PMCID: PMC11200595 DOI: 10.1088/2515-7647/ad5506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Stimulated Brillouin scattering (SBS) microscopy is a nonlinear all-optical imaging method that provides mechanical contrast based on the interaction of laser radiation and acoustical vibrational modes. Featuring high mechanical specificity and sensitivity, three-dimensional sectioning, and practical imaging times, SBS microscopy with (quasi) continuous wave excitation is rapidly advancing as a promising imaging tool for label-free visualization of viscoelastic information of materials and living biological systems. In this article, we introduce the theory of SBS microscopy and review the current state-of-the-art as well as recent innovations, including different approaches to system designs and data analysis. In particular, various performance parameters of SBS microscopy and its applications in the life sciences are described and discussed. Future perspectives for SBS microscopy are also presented.
Collapse
Affiliation(s)
- Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be’er-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 1 Ben Gurion Blvd, Be’er-Sheva 84105, Israel
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| |
Collapse
|
2
|
Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, Scarcelli G. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys Rev 2020; 12:615-624. [PMID: 32458371 PMCID: PMC7311586 DOI: 10.1007/s12551-020-00701-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many important biological functions and processes are reflected in cell and tissue mechanical properties such as elasticity and viscosity. However, current techniques used for measuring these properties have major limitations, such as that they can often not measure inside intact cells and/or require physical contact-which cells can react to and change. Brillouin light scattering offers the ability to measure mechanical properties in a non-contact and label-free manner inside of objects with high spatial resolution using light, and hence has emerged as an attractive method during the past decade. This new approach, coined "Brillouin microscopy," which integrates highly interdisciplinary concepts from physics, engineering, and mechanobiology, has led to a vibrant new community that has organized itself via a European funded (COST Action) network. Here we share our current assessment and opinion of the field, as emerged from a recent dedicated workshop. In particular, we discuss the prospects towards improved and more bio-compatible instrumentation, novel strategies to infer more accurate and quantitative mechanical measurements, as well as our current view on the biomechanical interpretation of the Brillouin spectra.
Collapse
Affiliation(s)
- Giuseppe Antonacci
- Photonics Research Group, INTEC, Ghent University-imec, 9052, Ghent, Belgium
- Present address: Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milan, Italy
| | - Timon Beck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kareem Elsayad
- Advanced Microscopy, Vienna Biocenter Core Facilities (VBCF), Vienna, Austria.
| | - Jochen Guck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Kyoohyun Kim
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Benedikt Krug
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|