1
|
Simińska-Stanny J, Nicolas L, Chafai A, Jafari H, Hajiabbas M, Dodi G, Gardikiotis I, Delporte C, Nie L, Podstawczyk D, Shavandi A. Advanced PEG-tyramine biomaterial ink for precision engineering of perfusable and flexible small-diameter vascular constructs via coaxial printing. Bioact Mater 2024; 36:168-184. [PMID: 38463551 PMCID: PMC10924180 DOI: 10.1016/j.bioactmat.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 μm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lise Nicolas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- European School of Materials Science and Engineering, University of Lorraine, Nancy, France
| | - Adam Chafai
- Université Libre de Bruxelles (ULB), Micro-milli Platform, Avenue F.D. Roosevelt, 50 - CP 165/67, 1050, Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Maryam Hajiabbas
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa, University of Medicine and Pharmacy of Iasi, Romania
| | - Christine Delporte
- Université Libre de Bruxelles (ULB), Faculté de Médecine, Campus Erasme - CP 611, Laboratory of Pathophysiological and Nutritional Biochemistry, Route de Lennik, 808, 1070, Bruxelles, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| |
Collapse
|
2
|
Zhao C, Wang Z, Tang X, Qin J, Jiang Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf B Biointerfaces 2023; 229:113431. [PMID: 37473652 DOI: 10.1016/j.colsurfb.2023.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Brain science has remained in the global spotlight as an important field of scientific and technological discovery. Numerous in vitro and in vivo animal studies have been performed to understand the pathological processes involved in brain diseases and develop strategies for their diagnosis and treatment. However, owing to species differences between animals and humans, several drugs have shown high rates of treatment failure in clinical settings, hindering the development of diagnostic and treatment modalities for brain diseases. In this scenario, microfluidic brain-on-a-chip (BOC) devices, which allow the direct use of human tissues for experiments, have emerged as novel tools for effectively avoiding species differences and performing screening for new drugs. Although microfluidic BOC technology has achieved significant progress in recent years, monitoring slight changes in neurochemicals, neurotransmitters, and environmental states in the brain has remained challenging owing to the brain's complex environment. Hence, the integration of BOC with new sensors that have high sensitivity and high selectivity is urgently required for the real-time dynamic monitoring of BOC parameters. As sensor-based technologies for BOC have not been summarized, here, we review the principle, fabrication process, and application-based classification of sensor-integrated BOC, and then summarize the opportunities and challenges for their development. Generally, sensor-integrated BOC enables real-time monitoring and dynamic analysis, accurately measuring minute changes in the brain and thus enabling the realization of in vivo brain analysis and drug development.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhenqi Jiang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Dabiri D, Dehghan Banadaki M, Bazargan V, Schaap A. Numerical investigation of moving gel wall formation in a Y-shaped microchannel. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractMolecular diffusive membranes play crucial roles in the field of microfluidics for biological applications e.g., 3D cell culture and biosensors. Hydrogels provide a range of benefits such as free diffusion of small molecules, cost-effectiveness, and the ability to be produced in bulk. Among various hydrogels, Pluronic F127 can be used for cell culture purposes due to its biocompatibility and flexible characteristics regarding its environment. Aqueous solutions of Pluronic F127 shows a reversible thermo-thickening property, which can be manipulated by introduction of ions. As a result, controlled diffusion of ions into the solution of Pluronic F127 can result in a controlled gel formation. In this study, the flow of immiscible solutions of Pluronic and sodium phosphate inside a Y-shaped microchannel is simulated using the level set method, and the effects of volume flow rates and temperature on the gel formation are investigated. It is indicated that the gel wall thickness can decrease by either increasing the Pluronic volume flow rate or increasing both volume flow rates while increasing the saline volume flow rate enhances the gel wall thickness. Below a critical temperature value, no gel wall is formed, and above that, a gel wall is constructed, with a thickness that increases with temperature. This setup can be used for drug screening, where gel wall provides an environment for drug-cell interactions.Article Highlights
Parallel flow of Pluronic F127 and saline solutions inside a Y-shaped microchannel results in formation of a gel wall at their interface.
The numerical analysis reveals the impact of each inlet flow rate and temperature on gel wall thickness and movement.
The findings indicate that the gel wall has a low but steady velocity toward the saline solution.
Graphical abstract
Collapse
|
4
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
5
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
6
|
Abstract
AbstractThe multidisciplinary research field of bioprinting combines additive manufacturing, biology and material sciences to create bioconstructs with three-dimensional architectures mimicking natural living tissues. The high interest in the possibility of reproducing biological tissues and organs is further boosted by the ever-increasing need for personalized medicine, thus allowing bioprinting to establish itself in the field of biomedical research, and attracting extensive research efforts from companies, universities, and research institutes alike. In this context, this paper proposes a scientometric analysis and critical review of the current literature and the industrial landscape of bioprinting to provide a clear overview of its fast-changing and complex position. The scientific literature and patenting results for 2000–2020 are reviewed and critically analyzed by retrieving 9314 scientific papers and 309 international patents in order to draw a picture of the scientific and industrial landscape in terms of top research countries, institutions, journals, authors and topics, and identifying the technology hubs worldwide. This review paper thus offers a guide to researchers interested in this field or to those who simply want to understand the emerging trends in additive manufacturing and 3D bioprinting.
Graphic abstract
Collapse
|
7
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
8
|
Ryan AR, England AR, Chaney CP, Cowdin MA, Hiltabidle M, Daniel E, Gupta AK, Oxburgh L, Carroll TJ, Cleaver O. Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Dev Biol 2021; 477:98-116. [PMID: 34000274 PMCID: PMC8382085 DOI: 10.1016/j.ydbio.2021.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.
Collapse
Affiliation(s)
- Anne R Ryan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alicia R England
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christopher P Chaney
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mitzy A Cowdin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Max Hiltabidle
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward Daniel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Thomas J Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
du Chatinier DN, Figler KP, Agrawal P, Liu W, Zhang YS. The potential of microfluidics-enhanced extrusion bioprinting. BIOMICROFLUIDICS 2021; 15:041304. [PMID: 34367403 PMCID: PMC8324304 DOI: 10.1063/5.0033280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
Microfluidics-enhanced bioprinting holds great promise in the field of biofabrication as it enables the fabrication of complex constructs with high shape fidelity and utilization of a broad range of bioinks with varying viscosities. Microfluidic systems contain channels on the micrometer-scale, causing a change in fluid behaviors, enabling unconventional bioprinting applications such as facilitating the precise spatial positioning and switching between bioinks with higher accuracy compared to traditional approaches. These systems can roughly be divided into three groups: microfluidic chips, co- and triaxial printheads, and printheads combining both. Although several aspects and parameters remain to be improved, this technology is promising as it is a step toward recapitulating the complex native histoarchitecture of human tissues more precisely. In this Perspective, key research on these different systems will be discussed before moving onto the limitations and outlook of microfluidics-enhanced bioprinting as a whole.
Collapse
Affiliation(s)
| | | | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng 2021; 5:011508. [PMID: 33728391 PMCID: PMC7954578 DOI: 10.1063/5.0034901] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting technology is evolving in complexity to enable human-scale, high-resolution, and multi-cellular constructs to better mimic the native tissue microenvironment. The ultimate goal is to achieve necessary complexity in the bioprinting process to biomanufacture fully-functional tissues and organs to address organ shortage and lack of patient-specific disease models. In this Review, we presented an in-depth overview of complex 3D bioprinting approaches including evolution of complex bioprinting, from simple gel-casting approach to multi-material bioprinting to omnidirectional bioprinting approaches, and emerging bioprinting approaches, including 4D bioprinting and in situ bioprinting technologies.
Collapse
Affiliation(s)
- Shen Ji
- Otto H. York Chemical and Materials Engineering, New Jersey Institute of Technology, 161 Warren Street, 150 Tiernan Hall, Newark, New Jersey 07102, USA
| | - Murat Guvendiren
- Author to whom correspondence should be addressed:. Phone: 973-596-2932. Fax: 973-596-8436
| |
Collapse
|
11
|
|
12
|
Zhang Y. Manufacture of complex heart tissues: technological advancements and future directions. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Liu J, Zheng H, Dai X, Poh PSP, Machens HG, Schilling AF. Transparent PDMS Bioreactors for the Fabrication and Analysis of Multi-Layer Pre-vascularized Hydrogels Under Continuous Perfusion. Front Bioeng Biotechnol 2020; 8:568934. [PMID: 33425863 PMCID: PMC7785876 DOI: 10.3389/fbioe.2020.568934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology.
Collapse
Affiliation(s)
- Juan Liu
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Huaiyuan Zheng
- Department of Hand Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai, China
| | - Patrina S P Poh
- Julius Wolff Institut, Charité - Universitätsmedizin, Berlin, Germany
| | - Hans-Günther Machens
- Department of Hand Surgery and Plastic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Arndt F Schilling
- Clinic for Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Liu T, Weng W, Zhang Y, Sun X, Yang H. Applications of Gelatin Methacryloyl (GelMA) Hydrogels in Microfluidic Technique-Assisted Tissue Engineering. Molecules 2020; 25:E5305. [PMID: 33202954 PMCID: PMC7698322 DOI: 10.3390/molecules25225305] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, the microfluidic technique has been widely used in the field of tissue engineering. Possessing the advantages of large-scale integration and flexible manipulation, microfluidic devices may serve as the production line of building blocks and the microenvironment simulator in tissue engineering. Additionally, in microfluidic technique-assisted tissue engineering, various biomaterials are desired to fabricate the tissue mimicking or repairing structures (i.e., particles, fibers, and scaffolds). Among the materials, gelatin methacrylate (GelMA)-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. In this work, applications of GelMA hydrogels in microfluidic technique-assisted tissue engineering are reviewed mainly from two viewpoints: Serving as raw materials for microfluidic fabrication of building blocks in tissue engineering and the simulation units in microfluidic chip-based microenvironment-mimicking devices. In addition, challenges and outlooks of the exploration of GelMA hydrogels in tissue engineering applications are proposed.
Collapse
Affiliation(s)
- Taotao Liu
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Wenxian Weng
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Yuzhuo Zhang
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang 110122, China; (T.L.); (W.W.); (Y.Z.)
| | - Xiaoting Sun
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- Department of Biophysics, School of Fundamental Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg 2020; 58:500-510. [PMID: 32391914 PMCID: PMC8456486 DOI: 10.1093/ejcts/ezaa093] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/27/2020] [Accepted: 02/18/2020] [Indexed: 12/25/2022] Open
Abstract
SUMMARY Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.
Collapse
Affiliation(s)
- Christopher D Roche
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, UK
| | - Russell J L Brereton
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Sydney, NSW, Australia
| | - Anthony W Ashton
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Christopher Jackson
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, University of Sydney, Kolling Institute, St Leonards, Sydney, NSW, Australia
- Department of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| |
Collapse
|
17
|
Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS, Ahadian S, Dokmeci MR, Khademhosseini A, Ashammakhi N. 3D Bioprinting of Oxygenated Cell-Laden Gelatin Methacryloyl Constructs. Adv Healthc Mater 2020; 9:e1901794. [PMID: 32548961 PMCID: PMC7500045 DOI: 10.1002/adhm.201901794] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/05/2020] [Indexed: 12/15/2022]
Abstract
Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2 ) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties lead to the production of a robust bioink suitable for 3D bioprinting and controlled O2 release. In addition, O2 release, bioprinting conditions, and mechanical performance of hydrogels having different CPO concentrations are characterized. As a proof of concept study, fibroblasts and cardiomyocytes are bioprinted using CPO containing GelMA bioink. Viability and metabolic activity of printed cells are checked after 7 days of culture under hypoxic condition. The results show that the addition of CPO improves the metabolic activity and viability of cells in bioprinted constructs under hypoxic condition.
Collapse
Affiliation(s)
- Ahmet Erdem
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Sivakoti Sangabathuni
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Yavuz Nuri Ertas
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri/Turkey
- Nanotechnology Research Center (ERNAM), Erciyes University, 38039 Kayseri, Turkey
| | - Halima Alem
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Ali S. Nasr
- Division of Cardiothoracic Surgery, Department of Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
18
|
Semba JA, Mieloch AA, Rybka JD. Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers (Basel) 2018; 10:E1290. [PMID: 30961215 PMCID: PMC6401825 DOI: 10.3390/polym10111290] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Photocrosslinked gelatin methacryloyl (GelMA) hydrogels have attracted great concern in the biomedical field because of their good biocompatibility and tunable physicochemical properties. Herein, different approaches to synthesize GelMA were introduced, especially, the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail. In addition, the traditional and cutting-edge technologies to characterize the properties of GelMA hydrogels and GelMA prepolymer were also overviewed and compared. Furthermore, the applications of GelMA hydrogels in cell culture and tissue engineering especially in the load-bearing tissue (bone and cartilage) were summarized, followed by concluding remarks.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Xiaoting Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Ziyuan Wang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Shuyu Guo
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Guangjiao Yu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Zhang YS, Oklu R, Albadawi H. Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovasc Diagn Ther 2017; 7:S329-S335. [PMID: 29399537 DOI: 10.21037/cdt.2017.08.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thrombosis is a prevailing vascular disorder that has been historically studied in vivo with conventional animal models. Here we review recent advances in methods and techniques that allow for engineering of biomimetic in vitro models of thrombosis, usually combined with microfluidic devices, termed thrombosis-on-a-chip systems, to reproduce such vascular pathology outside living organisms. These human cell-based thrombosis-on-a-chip platforms recapitulate the important characteristics of native thrombosis in terms of vascular structures, extracellular matrix properties, cellular composition, and pathophysiology, making them enabling in vitro models to study this important class of vascular disorders as well as to develop personalized treatment regimens.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, AZ, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|