1
|
deWeever A, Paudel SS, Zhou C, Francis CM, Tambe DT, Frank DW, Balczon R, Stevens T. cUMP elicits interendothelial gap formation during Pseudomonas aeruginosa infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L395-L405. [PMID: 39076085 PMCID: PMC11444506 DOI: 10.1152/ajplung.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Pseudomonas aeruginosa utilizes a type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilize a virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.
Collapse
Grants
- R01 HL167997 NHLBI NIH HHS
- HL136689 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL066299 NHLBI NIH HHS
- AI104922 HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases (DMID)
- R01 HL140182 NHLBI NIH HHS
- HL167997 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AI104922 NIAID NIH HHS
- HL148069 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL148069 NHLBI NIH HHS
- HL140182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL66299 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
3
|
Zou H, Wang X, Liu L, Zhang C, Ren D. The effects of specialized emergency and intensive nursing team on arterial blood gas and pulmonary function in pulmonary infection with respiratory failure. Am J Transl Res 2021; 13:10785-10792. [PMID: 34650756 PMCID: PMC8506985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To investigate effects of specialized emergency and intensive nursing team on arterial blood gas and pulmonary function in pulmonary infected patients with respiratory failure. METHODS 126 patients with pulmonary infection and respiratory failure admitted to our hospital were chosen and randomly divided into observation group and control group, with 63 cases in each group. The control-group received specialized routine nursing care, and the observation-group was treated with the emergency and intensive nursing care. Subsequently, the arterial blood gas, pulmonary function, inflammatory biomarkers, complication rate, recovery course and nursing satisfaction between the two groups were compared accordingly. RESULTS After nursing care, the arterial blood gas and pulmonary function indexes of the two groups were remarkably improved than before, and the improvement in observation-group was superior to that in control-group (P<0.05); The inflammatory indicators of hs-CRP and PCT in two groups decreased substantially than before, and observation-group had remarkably lower indicators than that of the control-group (P<0.05); The incidence of complications in observation-group was 4.76%, significantly lower than 19.05% in control-group (P<0.05); The objects in observation-group spent exactly shorter time on ventilator than whom in control-group, and the difference was statistically significant (P<0.05); The observation-group had critically shorter length of hospital stay than those in control-group (P<0.05). The satisfaction of the observation-group with nursing care was 93.65%, which was dramatically higher than 73.02% in control-group (P<0.05). CONCLUSIONS For pulmonary infection and respiratory failure, the nursing intervention carried by the specialized emergency and intensive nursing team can remarkably improve the arterial blood gas and pulmonary function, reduce the patients' inflammatory indicators and incidence of complications. The application of the nursing team can reduce the time on ventilator and length of hospital stay, and improve patients' satisfaction with nursing care.
Collapse
Affiliation(s)
- Hong Zou
- Department of Nursing, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Xiaoping Wang
- Department of Endocrinology, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Chunyan Zhang
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| | - Dapeng Ren
- Department of Anesthesiology, The People’s Hospital of Kaizhou DistrictChongqing 405400, China
| |
Collapse
|
4
|
Pneumonia-induced endothelial amyloids reduce dendritic spine density in brain neurons. Sci Rep 2020; 10:9327. [PMID: 32518286 PMCID: PMC7283224 DOI: 10.1038/s41598-020-66321-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa pneumonia elicits endothelial cell release of cytotoxic amyloids that can be recovered from the bronchoalveolar lavage and cerebrospinal fluids of critically ill patients. Introduction of these cytotoxic amyloids into the lateral ventricle impairs learning and memory in mice. However, it is unclear whether the amyloids of lung origin (1) are neurotropic, and (2) cause structural remodeling of hippocampal dendrites. Thus, we used electrophysiological studies in brain slices and structural analysis of post-mortem tissues obtained from animals exposed to endothelium-derived amyloids to assess these issues. The amyloids were administered via three different routes, by intracerebroventricular, intratracheal, and intraperitoneal injections. Synaptic long-term potentiation was abolished following intracerebroventricular amyloid injection. Fluorescence dialysis or Golgi-impregnation labeling showed reduced dendritic spine density and destabilized spines of hippocampal pyramidal neurons 4 weeks after intracerebroventricular amyloid injection. In comparison, endothelial amyloids introduced to the airway caused the most prominent dendritic spine density reduction, yet intraperitoneal injection of these amyloids did not affect spine density. Our findings indicate that infection-elicited lung endothelial amyloids are neurotropic and reduce neuronal dendritic spine density in vivo. Amyloids applied into the trachea may either be disseminated through the circulation and cross the blood-brain barrier to access the brain, initiate feed-forward amyloid transmissibility among cells of the blood-brain barrier or access the brain in other ways. Nevertheless, lung-derived amyloids suppress hippocampal signaling and cause injury to neuronal structure.
Collapse
|
5
|
Voth S, Gwin M, Francis CM, Balczon R, Frank DW, Pittet JF, Wagener BM, Moser SA, Alexeyev M, Housley N, Audia JP, Piechocki S, Madera K, Simmons A, Crawford M, Stevens T. Virulent Pseudomonas aeruginosa infection converts antimicrobial amyloids into cytotoxic prions. FASEB J 2020; 34:9156-9179. [PMID: 32413239 PMCID: PMC7383673 DOI: 10.1096/fj.202000051rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa infection elicits the production of cytotoxic amyloids from lung endothelium, yet molecular mechanisms of host‐pathogen interaction that underlie the amyloid production are not well understood. We examined the importance of type III secretion system (T3SS) effectors in the production of cytotoxic amyloids. P aeruginosa possessing a functional T3SS and effectors induced the production and release of cytotoxic amyloids from lung endothelium, including beta amyloid, and tau. T3SS effector intoxication was sufficient to generate cytotoxic amyloid release, yet intoxication with exoenzyme Y (ExoY) alone or together with exoenzymes S and T (ExoS/T/Y) generated the most virulent amyloids. Infection with lab and clinical strains engendered cytotoxic amyloids that were capable of being propagated in endothelial cell culture and passed to naïve cells, indicative of a prion strain. Conversely, T3SS‐incompetent P aeruginosa infection produced non‐cytotoxic amyloids with antimicrobial properties. These findings provide evidence that (1) endothelial intoxication with ExoY is sufficient to elicit self‐propagating amyloid cytotoxins during infection, (2) pulmonary endothelium contributes to innate immunity by generating antimicrobial amyloids in response to bacterial infection, and (3) ExoY contributes to the virulence arsenal of P aeruginosa through the subversion of endothelial amyloid host‐defense to promote a lung endothelial‐derived cytotoxic proteinopathy.
Collapse
Affiliation(s)
- Sarah Voth
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Meredith Gwin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Christopher Michael Francis
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ron Balczon
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Stephen A Moser
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Nicole Housley
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jonathon P Audia
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Scott Piechocki
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Kayla Madera
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Autumn Simmons
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Michaela Crawford
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
6
|
Balczon R, Pittet JF, Wagener BM, Moser SA, Voth S, Vorhees CV, Williams MT, Bridges JP, Alvarez DF, Koloteva A, Xu Y, Zha XM, Audia JP, Stevens T, Lin MT. Infection-induced endothelial amyloids impair memory. FASEB J 2019; 33:10300-10314. [PMID: 31211919 PMCID: PMC6704457 DOI: 10.1096/fj.201900322r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 01/14/2023]
Abstract
Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Stephen A. Moser
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Voth
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - James P. Bridges
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Diego F. Alvarez
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Anna Koloteva
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Yuanyuan Xu
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - Jonathon P. Audia
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Troy Stevens
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Mike T. Lin
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
7
|
Casal D, Iria I, Ramalho JS, Alves S, Mota-Silva E, Mascarenhas-Lemos L, Pontinha C, Guadalupe-Cabral M, Ferreira-Silva J, Ferraz-Oliveira M, Vassilenko V, Goyri-O'Neill J, Pais D, Videira PA. BD-2 and BD-3 increase skin flap survival in a model of ischemia and Pseudomonas aeruginosa infection. Sci Rep 2019; 9:7854. [PMID: 31133641 PMCID: PMC6536547 DOI: 10.1038/s41598-019-44153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/09/2019] [Indexed: 02/08/2023] Open
Abstract
The main aim of this work was to study the usefulness of human β-defensins 2 (BD-2) and 3 (BD-3), which are part of the innate immune system, in the treatment of infected ischemic skin flaps. We investigated the effect of transducing rat ischemic skin flaps with lentiviral vectors encoding human BD-2, BD-3, or both BD-2 and BD-3, to increase flap survival in the context of a P. aeruginosa infection associated with a foreign body. The secondary endpoints assessed were: bacterial counts, and biofilm formation on the surface of the foreign body. A local ischemic environment was created by producing arterialized venous flaps in the left epigastric region of rats. Flaps were intentionally infected by placing underneath them two catheters with 105 CFU of P. aeruginosa before the surgical wounds were hermetically closed. Flap biopsies were performed 3 and 7 days post-operatively, and the specimens submitted to immunohistochemical analysis for BD-2 and BD-3, as well as to bacterial quantification. Subsequently, the catheter segments were analyzed with scanning electron microscopy (SEM). Flaps transduced with BD-2 and BD-3 showed expression of these defensins and presented increased flap survival. Rats transduced with BD-3 presented a net reduction in the number of P. aeruginosa on the surface of the foreign body and lesser biofilm formation.
Collapse
Affiliation(s)
- Diogo Casal
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal.
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Caparica, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Inês Iria
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Caparica, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Molecular Microbiology and Biotechnology Unit, iMed, ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- INESC MN - Microsystems and Nanotechnologies, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - José S Ramalho
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Alves
- Pathology Department, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal
| | - Eduarda Mota-Silva
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, Lisbon, Caparica, Portugal
| | - Luís Mascarenhas-Lemos
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Pathology Department, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal
| | - Carlos Pontinha
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Pathology Department, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal
| | - Maria Guadalupe-Cabral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Ferreira-Silva
- Pathology Department, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal
| | - Mário Ferraz-Oliveira
- Pathology Department, Centro Hospitalar de Lisboa Central - Hospital de São José, Lisbon, Portugal
| | - Valentina Vassilenko
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, Lisbon, Caparica, Portugal
| | - João Goyri-O'Neill
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diogo Pais
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Caparica, Portugal.
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- CDG & Allies- Professional and Patient Association International Network (PPAIN), Lisbon, Caparica, Portugal.
| |
Collapse
|