1
|
Fernandes KE, Johnston CL, Williams BC, Carter DA, Sunde M. Protein-mediated stabilization of amphotericin B increases its efficacy against diverse fungal pathogens. Microbiol Spectr 2025:e0068625. [PMID: 40243314 DOI: 10.1128/spectrum.00686-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Amphotericin B (AMB), a potent and broad-spectrum antifungal agent, faces solubility and toxicity challenges in clinical use. In this study, we explored the ability of DewY and EASΔ15, class I fungal hydrophobin proteins with unique amphipathic properties and self-assembly capabilities, to stabilize AMB in solution. UV-visible spectroscopy confirmed the ability of hydrophobin proteins to stabilize the monomeric state of AMB in aqueous solution for up to 48 h. Further assays revealed that this effect was not exclusive to hydrophobins, however, as non-hydrophobin proteins provided similar stabilizing effects. AMB-protein combinations exhibited enhanced efficacy against diverse clinically relevant fungal pathogens, with 4- to 32-fold reductions in the effective in vitro dosage compared to AMB alone. Microscopic analyses found fungal cells treated with AMB alone and in combination with proteins had identical morphological changes, suggesting that protein interactions do not alter the mode of action of AMB. Instead, our results indicate that the monomeric state of AMB is stabilized in aqueous solution by non-specific interactions with hydrophobic areas on proteins. We suggest that this protein-mediated enhancement of solubility could reduce the required dose of AMB, providing a basis for optimizing AMB-based antifungal therapies.IMPORTANCEFungal infections are a growing global health concern, yet effective antifungal treatments remain limited by toxicity and poor solubility. AMB, a potent broad-spectrum antifungal, is highly effective but suffers from severe side effects and formulation challenges. Our study demonstrates that proteins, including fungal hydrophobins, can stabilize AMB in its monomeric form, significantly enhancing its solubility and efficacy against a range of fungal pathogens. These findings suggest that protein-mediated stabilization could enhance the effectiveness of AMB by reducing the required dosage and potentially lowering its toxic side effects. This approach offers a promising strategy for optimizing AMB therapies and improving treatment options, especially in resource-limited settings where fungal infections impose a significant health burden.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Caitlin L Johnston
- School of Medical Sciences and Sydney Nano, University of Sydney, Sydney, New South Wales, Australia
| | - Brayden C Williams
- School of Medical Sciences and Sydney Nano, University of Sydney, Sydney, New South Wales, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Margaret Sunde
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
- School of Medical Sciences and Sydney Nano, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Yang X, Wang X, Li B, Chu J. A high-precision automated liquid pipetting device with an interchangeable tip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:094102. [PMID: 37728420 DOI: 10.1063/5.0139565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Liquid handling is a necessary act to deal with liquid samples from scientific labs to industry. However, existing pipetting devices suffer from inaccuracy and low precision when dealing with submicroliter liquids, which significantly affect their applications in low-volume quantitation. In this article, we present an automated liquid pipetting device that can aspirate liquid from microplates and dispense nanoliter droplets with high precision. Liquid aspiration is realized by using a micropump and a solenoid valve, and on-demand nanoliter droplet printing is realized by using a low-cost and interchangeable pipette tip combined with a piezoelectric actuator. Based on the microfluidic printing technology, the volumetric coefficient of variation of the dispensed liquid is less than 2% below 1 µl. A demonstration of concentration dilution for quantitative analysis has been successfully performed using the automated liquid pipetting device, demonstrating its potential in low-volume liquid handling for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Xin Yang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaojie Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Baoqing Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, Anhui, China
| |
Collapse
|
3
|
Rollo RF, Mori G, Hill TA, Hillemann D, Niemann S, Homolka S, Fairlie DP, Blumenthal A. Wollamide Cyclic Hexapeptides Synergize with Established and New Tuberculosis Antibiotics in Targeting Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0046523. [PMID: 37289062 PMCID: PMC10433873 DOI: 10.1128/spectrum.00465-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Shorter and more effective treatment regimens as well as new drugs are urgent priorities for reducing the immense global burden of tuberculosis (TB). As treatment of TB currently requires multiple antibiotics with diverse mechanisms of action, any new drug lead requires assessment of potential interactions with existing TB antibiotics. We previously described the discovery of wollamides, a new class of Streptomyces-derived cyclic hexapeptides with antimycobacterial activity. To further assess the value of the wollamide pharmacophore as an antimycobacterial lead, we determined wollamide interactions with first- and second-line TB antibiotics by determining fractional inhibitory combination index and zero interaction potency scores. In vitro two-way and multiway interaction analyses revealed that wollamide B1 synergizes with ethambutol, pretomanid, delamanid, and para-aminosalicylic acid in inhibiting the replication and promoting the killing of phylogenetically diverse clinical and reference strains of the Mycobacterium tuberculosis complex (MTBC). Wollamide B1 antimycobacterial activity was not compromised in multi- and extensively drug-resistant MTBC strains. Moreover, growth-inhibitory antimycobacterial activity of the combination of bedaquiline/pretomanid/linezolid was further enhanced by wollamide B1, and wollamide B1 did not compromise the antimycobacterial activity of the isoniazid/rifampicin/ethambutol combination. Collectively, these findings add new dimensions to the desirable characteristics of the wollamide pharmacophore as an antimycobacterial lead compound. IMPORTANCE Tuberculosis (TB) is an infectious disease that affects millions of people globally, with 1.6 million deaths annually. TB treatment requires combinations of multiple different antibiotics for many months, and toxic side effects can occur. Therefore, shorter, safer, more effective TB therapies are required, and these should ideally also be effective against drug-resistant strains of the bacteria that cause TB. This study shows that wollamide B1, a chemically optimized member of a new class of antibacterial compounds, inhibits the growth of drug-sensitive as well as multidrug-resistant Mycobacterium tuberculosis isolated from TB patients. In combination with TB antibiotics, wollamide B1 synergistically enhances the activity of several antibiotics, including complex drug combinations that are currently used for TB treatment. These new insights expand the catalogue of the desirable characteristics of wollamide B1 as an antimycobacterial lead compound that might inspire the development of improved TB treatments.
Collapse
Affiliation(s)
- Rachel F. Rollo
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Giorgia Mori
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Doris Hillemann
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Susanne Homolka
- Molecular and Experimental Mycobacteriology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Antje Blumenthal
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Baydemir Peşint G, Eren Yüngeviş B, Perçin Demirçelik I. Enhanced invertase binding from baker's yeast via cryogels included boronic acids. World J Microbiol Biotechnol 2023; 39:267. [PMID: 37528302 DOI: 10.1007/s11274-023-03697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/08/2023] [Indexed: 08/03/2023]
Abstract
Invertase, an industrially significant glycoenzyme, was purified from baker's yeast using poly (2-Hydroxyethyl methacrylate) [PHema-Pba] cryogels functionalized with boronic acid. At subzero temperatures, PHema-Pba cryogels were synthesized and characterized using swelling tests, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The surface area of the PHema-Pba cryogels was 14 m2/g with a swelling ratio of 88.3% and macroporosity of 72%. The interconnected macropores of PHema-Pba cryogels were shown via scanning electron microscopy. Invertase binding capacity of PHema-Pba cryogel was evaluated by binding studies in different pH, temperature, and interaction time conditions and the maximum Invertase binding of PHema-Pba cryogel was found as 15.2 mg/g. and 23.7 fold Invertase purification was achieved from baker's yeast using PHema-Pba cryogels. The results show that PHema-Pba cryogels have high Invertase binding capacity and may be used as an alternative method for enzyme purification via boronate affinity systems.
Collapse
Affiliation(s)
- Gözde Baydemir Peşint
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| | - Burcu Eren Yüngeviş
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | | |
Collapse
|
5
|
Omollo C, Singh V, Kigondu E, Wasuna A, Agarwal P, Moosa A, Ioerger TR, Mizrahi V, Chibale K, Warner DF. Developing synergistic drug combinations to restore antibiotic sensitivity in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 65:AAC.02554-20. [PMID: 33619062 PMCID: PMC8092878 DOI: 10.1128/aac.02554-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a leading global cause of mortality owing to an infectious agent, accounting for almost one-third of antimicrobial resistance (AMR) deaths annually. We aimed to identify synergistic anti-TB drug combinations with the capacity to restore therapeutic efficacy against drug-resistant mutants of the causative agent, Mycobacterium tuberculosis We investigated combinations containing the known translational inhibitors, spectinomycin (SPT) and fusidic acid (FA), or the phenothiazine, chlorpromazine (CPZ), which disrupts mycobacterial energy metabolism. Potentiation of whole-cell drug efficacy was observed in SPT-CPZ combinations. This effect was lost against an M. tuberculosis mutant lacking the major facilitator superfamily (MFS) efflux pump, Rv1258c. Notably, the SPT-CPZ combination partially restored SPT efficacy against an SPT-resistant mutant carrying a g1379t point mutation in rrs, encoding the mycobacterial 16S ribosomal RNA. Combinations of SPT with FA, which targets the mycobacterial elongation factor G, exhibited potentiating activity against wild-type M. tuberculosis Moreover, this combination produced a modest potentiating effect against both FA-monoresistant and SPT-monoresistant mutants. Finally, combining SPT with the frontline anti-TB agents, rifampicin (RIF) and isoniazid, resulted in enhanced activity in vitro and ex vivo against both drug-susceptible M. tuberculosis and a RIF-monoresistant rpoB S531L mutant.These results support the utility of novel potentiating drug combinations in restoring antibiotic susceptibility of M. tuberculosis strains carrying genetic resistance to any one of the partner compounds.
Collapse
Affiliation(s)
- Charles Omollo
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
| | - Pooja Agarwal
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Atica Moosa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Thomas R Ioerger
- Texas A&M University, Department of Computer Science, College Station, TX, 77843, USA
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
6
|
Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, Immanuel SRC, Brooks AN, Shepherd TR, Baliga NS. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. mSystems 2023; 8:e0090422. [PMID: 36537814 PMCID: PMC9948699 DOI: 10.1128/msystems.00904-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 02/24/2023] Open
Abstract
There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.
Collapse
Affiliation(s)
| | - Min Pan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, Washington, USA
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
| | | | - Ananya Dash
- Institute for Systems Biology, Seattle, Washington, USA
| | | | | | | | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering Sciences Institute, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
- Department of Microbiology, University of Washington, Seattle Washington, USA
| |
Collapse
|
7
|
Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238525. [PMID: 36500617 PMCID: PMC9740572 DOI: 10.3390/molecules27238525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Collapse
|
8
|
Wagoner J, Herring S, Hsiang TY, Ianevski A, Biering SB, Xu S, Hoffmann M, Pöhlmann S, Gale M, Aittokallio T, Schiffer JT, White JM, Polyak SJ. Combinations of Host- and Virus-Targeting Antiviral Drugs Confer Synergistic Suppression of SARS-CoV-2. Microbiol Spectr 2022; 10:e0333122. [PMID: 36190406 PMCID: PMC9718484 DOI: 10.1128/spectrum.03331-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.
Collapse
Affiliation(s)
- Jessica Wagoner
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Shawn Herring
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Tien-Ying Hsiang
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California—Berkeley, Berkeley, California, USA
| | - Shuang Xu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Joshua T. Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Disease, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Margaryan H, Evangelopoulos DD, Muraro Wildner L, McHugh TD. Pre-Clinical Tools for Predicting Drug Efficacy in Treatment of Tuberculosis. Microorganisms 2022; 10:microorganisms10030514. [PMID: 35336089 PMCID: PMC8956012 DOI: 10.3390/microorganisms10030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Combination therapy has, to some extent, been successful in limiting the emergence of drug-resistant tuberculosis. Drug combinations achieve this advantage by simultaneously acting on different targets and metabolic pathways. Additionally, drug combination therapies are shown to shorten the duration of therapy for tuberculosis. As new drugs are being developed, to overcome the challenge of finding new and effective drug combinations, systems biology commonly uses approaches that analyse mycobacterial cellular processes. These approaches identify the regulatory networks, metabolic pathways, and signaling programs associated with M. tuberculosis infection and survival. Different preclinical models that assess anti-tuberculosis drug activity are available, but the combination of models that is most predictive of clinical treatment efficacy remains unclear. In this structured literature review, we appraise the options to accelerate the TB drug development pipeline through the evaluation of preclinical testing assays of drug combinations.
Collapse
Affiliation(s)
- Hasmik Margaryan
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, Royal Free Campus, London NW3 2PF, UK; (L.M.W.); (T.D.M.)
- Correspondence:
| | - Dimitrios D. Evangelopoulos
- Department of Microbial Diseases, Eastman Dental Institute, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK;
| | - Leticia Muraro Wildner
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, Royal Free Campus, London NW3 2PF, UK; (L.M.W.); (T.D.M.)
| | - Timothy D. McHugh
- UCL Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, Royal Free Campus, London NW3 2PF, UK; (L.M.W.); (T.D.M.)
| |
Collapse
|
10
|
Synergistic Antibiofilm Effect of Thymol and Piperine in Combination with Aminoglycosides Antibiotics against Four Salmonella enterica Serovars. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1567017. [PMID: 34745275 PMCID: PMC8566057 DOI: 10.1155/2021/1567017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Biofilms related to human infection have high levels of pathogenicity due to their resistance to antimicrobial agents. The discovery of antibiofilm agents is necessary. One approach to overcome this problem is the use of antibiotics agents' combination. This study aimed to determine the efficacy of the combination of natural products thymol and piperine with three aminoglycosides antibiotics, amikacin, kanamycin, and streptomycin against biofilm-forming Salmonella enterica. The microtiter plate assay method was used to evaluate the biofilm-producing capacity of the isolates. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined by the broth microdilution method. The inhibition of biofilm formation and biofilm eradication was determined using the microtiter broth method. The checkerboard method was used to determine the combined effects of natural products with aminoglycosides antibiotics. All the tested isolates showed various levels of biofilm formation. Overall, combinations provided 43.3% of synergy in preventing the biofilm formation and 40% of synergy in eradicating preformed biofilms, and in both cases, no antagonism was observed. The combination of thymol with kanamycin showed a synergistic effect with 16- to 32-fold decrease of the minimum biofilm eradication concentration (MBEC) of kanamycin. The interaction of piperine with amikacin and streptomycin also revealed a synergistic effect with 16-fold reduction of the minimum biofilm inhibitory concentration (MBIC). The combination of thymol with the three antibiotics showed a strong synergistic effect in both inhibiting the biofilm formation and eradicating the preformed biofilm. This study demonstrates that thymol and piperine potentiate the antibiofilm activity of amikacin, kanamycin, and streptomycin. These combinations are a promising approach therapeutic to overcome the problem of Salmonella enterica biofilm-associated infections. In addition, these combinations could help reduce the concentration of individual components, thereby minimizing the nephrotoxicity of aminoglycosides antibiotics.
Collapse
|
11
|
Herring S, Oda JM, Wagoner J, Kirchmeier D, O'Connor A, Nelson EA, Huang Q, Liang Y, DeWald LE, Johansen LM, Glass PJ, Olinger GG, Ianevski A, Aittokallio T, Paine MF, Fink SL, White JM, Polyak SJ. Inhibition of Arenaviruses by Combinations of Orally Available Approved Drugs. Antimicrob Agents Chemother 2021; 65:e01146-20. [PMID: 33468464 PMCID: PMC8097473 DOI: 10.1128/aac.01146-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.
Collapse
Affiliation(s)
- Shawn Herring
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jessica M Oda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Delaney Kirchmeier
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Aidan O'Connor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lisa Evans DeWald
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Susan L Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Song HS, Choi TR, Bhatia SK, Lee SM, Park SL, Lee HS, Kim YG, Kim JS, Kim W, Yang YH. Combination Therapy Using Low-Concentration Oxacillin with Palmitic Acid and Span85 to Control Clinical Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9100682. [PMID: 33049970 PMCID: PMC7599641 DOI: 10.3390/antibiotics9100682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
The overuse of antibiotics has led to the emergence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). MRSA is difficult to kill with a single antibiotic because it has evolved to be resistant to various antibiotics by increasing the PBP2a (mecA) expression level, building up biofilm, introducing SCCmec for multidrug resistance, and changing its membrane properties. Therefore, to overcome antibiotic resistance and decrease possible genetic mutations that can lead to the acquisition of higher antibiotic resistance, drug combination therapy was applied based on previous results indicating that MRSA shows increased susceptibility to free fatty acids and surfactants. The optimal ratio of three components and the synergistic effects of possible combinations were investigated. The combinations were directly applied to clinically isolated strains, and the combination containing 15 μg/mL of oxacillin was able to control SCCmec type III and IV isolates having an oxacillin minimum inhibitory concentration (MIC) up to 1024 μg/mL; moreover, the combination with a slightly increased oxacillin concentration was able to kill SCCmec type II. Phospholipid analysis revealed that clinical strains with higher resistance contained a high portion of 12-methyltetradecanoic acid (anteiso-C15:0) and 14-methylhexadecanoic acid (anteiso-C17:0), although individual strains showed different patterns. In summary, we showed that combinatorial therapy with a low concentration of oxacillin controlled different laboratory and highly diversified clinical MRSA strains.
Collapse
Affiliation(s)
- Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
- Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, Korea
| | - Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 511 Sangdo-dong, Seoul 156-743, Korea;
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul 05355, Korea;
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea;
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea; (H.-S.S.); (T.-R.C.); (S.K.B.); (S.M.L.); (S.L.P.); (H.S.L.)
- Institute for Ubiquitous Information Technology and Applications (CBRU), Konkuk University, Seoul 05029, Korea
- Correspondence:
| |
Collapse
|
13
|
In Vitro Combinations of Baloxavir Acid and Other Inhibitors against Seasonal Influenza A Viruses. Viruses 2020; 12:v12101139. [PMID: 33049959 PMCID: PMC7599940 DOI: 10.3390/v12101139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Two antiviral classes, the neuraminidase inhibitors (NAIs) and polymerase inhibitors (baloxavir marboxil and favipiravir) can be used to prevent and treat influenza infections during seasonal epidemics and pandemics. However, prolonged treatment may lead to the emergence of drug resistance. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we evaluated in vitro combinations of baloxavir acid (BXA) and other approved drugs against influenza A(H1N1)pdm09 and A(H3N2) subtypes. The determination of an effective concentration inhibiting virus cytopathic effects by 50% (EC50) for each drug and combination indexes (CIs) were based on cell viability. CompuSyn software was used to determine synergism, additivity or antagonism between drugs. Combinations of BXA and NAIs or favipiravir had synergistic effects on cell viability against the two influenza A subtypes. Those effects were confirmed using a physiological and predictive ex vivo reconstructed human airway epithelium model. On the other hand, the combination of BXA and ribavirin showed mixed results. Overall, BXA stands as a good candidate for combination with several existing drugs, notably oseltamivir and favipiravir, to improve in vitro antiviral activity. These results should be considered for further animal and clinical evaluations.
Collapse
|
14
|
Lactoferrin-Derived Peptide Lactofungin Is Potently Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.00842-20. [PMID: 32690642 DOI: 10.1128/aac.00842-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 01/10/2023] Open
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein with broad-spectrum antimicrobial activity. Previously, we discovered that LF synergistically enhanced the antifungal efficacy of amphotericin B (AMB) across a variety of yeast species and subsequently hypothesized that this synergy was enhanced by the presence of small peptides derived from the whole LF molecule. In this study, LF was digested with pepsin under a range of conditions. The resulting hydrolysates exhibited enhanced synergy with AMB compared to its synergy with undigested LF. Samples were analyzed using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and 14 peptides were identified. The sequences of these peptides were predicted by matching their molecular weights to those of a virtual digest with pepsin. The relative intensities of predicted peptides in each hydrolysate were compared with the activity of the hydrolysate, and the structural and physicochemical properties of the peptides were assessed. From this, a 30-residue peptide was selected for synthesis and dubbed lactofungin (LFG). Pure LFG was highly synergistic with AMB, outperforming native LF in all fungal species tested. With potential for further structural and chemical improvements, LFG is an excellent lead for development as an antifungal adjuvant.
Collapse
|
15
|
Cokol-Cakmak M, Cetiner S, Erdem N, Bakan F, Cokol M. Guided screen for synergistic three-drug combinations. PLoS One 2020; 15:e0235929. [PMID: 32645104 PMCID: PMC7347197 DOI: 10.1371/journal.pone.0235929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Combinations of three or more drugs are routinely used in various medical fields such as clinical oncology and infectious diseases to prevent resistance or to achieve synergistic therapeutic benefits. The very large number of possible high-order drug combinations presents a formidable challenge for discovering synergistic drug combinations. Here, we establish a guided screen to discover synergistic three-drug combinations. Using traditional checkerboard and recently developed diagonal methods, we experimentally measured all pairwise interactions among eight compounds in Erwinia amylovora, the causative agent of fire blight. Showing that synergy measurements of these two methods agree, we predicted synergy/antagonism scores for all possible three-drug combinations by averaging the synergy scores of pairwise interactions. We validated these predictions by experimentally measuring 35 three-drug interactions. Therefore, our guided screen for discovering three-drug synergies is (i) experimental screen of all pairwise interactions using diagonal method, (ii) averaging pairwise scores among components to predict three-drug interaction scores, (iii) experimental testing of top predictions. In our study, this strategy resulted in a five-fold reduction in screen size to find the most synergistic three-drug combinations.
Collapse
Affiliation(s)
- Melike Cokol-Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Selim Cetiner
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Nurdan Erdem
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Feray Bakan
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
16
|
Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.02284-19. [PMID: 32094132 PMCID: PMC7179636 DOI: 10.1128/aac.02284-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.
Collapse
|
17
|
Meyer CT, Wooten DJ, Lopez CF, Quaranta V. Charting the Fragmented Landscape of Drug Synergy. Trends Pharmacol Sci 2020; 41:266-280. [PMID: 32113653 PMCID: PMC7986484 DOI: 10.1016/j.tips.2020.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Even as the clinical impact of drug combinations continues to accelerate, no consensus on how to quantify drug synergy has emerged. Rather, surveying the landscape of drug synergy reveals the persistence of historical fissures regarding the appropriate domains of conflicting synergy models - fissures impacting all aspects of combination therapy discovery and deployment. Herein we chronicle the impact of these divisions on: (i) the design, interpretation, and reproducibility of high-throughput combination screens; (ii) the performance of algorithms to predict synergistic mixtures; and (iii) the search for higher-order synergistic interactions. Further progress in each of these subfields hinges on reaching a consensus regarding the long-standing rifts in the field.
Collapse
Affiliation(s)
- Christian T Meyer
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
| | - David J Wooten
- Department of Physics, Pennsylvania State University, University Park, PA, USA
| | - Carlos F Lopez
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Vito Quaranta
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Yilancioglu K, Cokol M. Design of high-order antibiotic combinations against M. tuberculosis by ranking and exclusion. Sci Rep 2019; 9:11876. [PMID: 31417151 PMCID: PMC6695482 DOI: 10.1038/s41598-019-48410-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Combinations of more than two drugs are routinely used for the treatment of pathogens and tumors. High-order combinations may be chosen due to their non-overlapping resistance mechanisms or for favorable drug interactions. Synergistic/antagonistic interactions occur when the combination has a higher/lower effect than the sum of individual drug effects. The standard treatment of Mycobacterium tuberculosis (Mtb) is an additive cocktail of three drugs which have different targets. Herein, we experimentally measured all 190 pairwise interactions among 20 antibiotics against Mtb growth. We used the pairwise interaction data to rank all possible high-order combinations by strength of synergy/antagonism. We used drug interaction profile correlation as a proxy for drug similarity to establish exclusion criteria for ideal combination therapies. Using this ranking and exclusion design (R/ED) framework, we modeled ways to improve the standard 3-drug combination with the addition of new drugs. We applied this framework to find the best 4-drug combinations against drug-resistant Mtb by adding new exclusion criteria to R/ED. Finally, we modeled alternating 2-order combinations as a cycling treatment and found optimized regimens significantly reduced the overall effective dose. R/ED provides an adaptable framework for the design of high-order drug combinations against any pathogen or tumor.
Collapse
Affiliation(s)
- Kaan Yilancioglu
- Faculty of Engineering and Natural Sciences, Uskudar University, İstanbul, Turkey
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Uskudar University, İstanbul, Turkey. .,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. .,Axcella Health, Cambridge, Massachusetts, USA.
| |
Collapse
|
19
|
Cokol M, Li C, Chandrasekaran S. Chemogenomic model identifies synergistic drug combinations robust to the pathogen microenvironment. PLoS Comput Biol 2018; 14:e1006677. [PMID: 30596642 PMCID: PMC6329523 DOI: 10.1371/journal.pcbi.1006677] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/11/2019] [Accepted: 11/27/2018] [Indexed: 01/31/2023] Open
Abstract
Antibiotics need to be effective in diverse environments in vivo. However, the pathogen microenvironment can have a significant impact on antibiotic potency. Further, antibiotics are increasingly used in combinations to combat resistance, yet, the effect of microenvironments on drug-combination efficacy is unknown. To exhaustively explore the impact of diverse microenvironments on drug-combinations, here we develop a computational framework—Metabolism And GENomics-based Tailoring of Antibiotic regimens (MAGENTA). MAGENTA uses chemogenomic profiles of individual drugs and metabolic perturbations to predict synergistic or antagonistic drug-interactions in different microenvironments. We uncovered antibiotic combinations with robust synergy across nine distinct environments against both E. coli and A. baumannii by searching through 2556 drug-combinations of 72 drugs. MAGENTA also accurately predicted the change in efficacy of bacteriostatic and bactericidal drug-combinations during growth in glycerol media, which we confirmed experimentally in both microbes. Our approach identified genes in glycolysis and glyoxylate pathway as top predictors of synergy and antagonism respectively. Our systems approach enables tailoring of antibiotic therapies based on the pathogen microenvironment. The antibiotic resistance epidemic has created a pressing need to understand factors that influence antibiotic efficacy. An often-overlooked factor in the search for new treatments is the pathogen environment. Understanding the differences in pathogen sensitivity to antibiotics in lab conditions versus inside the host is necessary for translating new discoveries into the clinic. Hence, we experimentally measured the sensitivity of E. coli to drugs and drug combinations in different metabolic conditions. Our data revealed that the environment dramatically changes treatment potency. Each antibiotic class was affected uniquely by each metabolic condition. The large number of metabolic conditions inside the host greatly complicates the identification of effective therapies. To address this challenge, we present a computational approach called MAGENTA that accurately predicted efficacy of antibiotic regimens in different conditions, which we confirmed experimentally. Furthermore, we show that MAGENTA can be applied to other bacterial pathogens such as A. baumannii and M. tuberculosis without the need for generating expensive data in each organism. MAGENTA accurately predicted efficacy in the pathogen A. baumannii using data from E. coli by identifying genes that are common between the two bacteria. Our study revealed the significant yet predictable impact of environment on drug combination potency.
Collapse
Affiliation(s)
- Murat Cokol
- Axcella Health, Cambridge, Massachusetts, United States of America
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- * E-mail: (SC); (MC)
| | - Chen Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (SC); (MC)
| |
Collapse
|