1
|
Hakeem RM, Subramanian BC, Hockenberry MA, King ZT, Butler MT, Legant WR, Bear JE. A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis. ACS NANO 2023; 17:197-211. [PMID: 36475639 PMCID: PMC9839609 DOI: 10.1021/acsnano.2c05941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.
Collapse
Affiliation(s)
- Reem M Hakeem
- Department of Biochemistry and Biophysics, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Bhagawat C Subramanian
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Max A Hockenberry
- Department of Cell Biology and Physiology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Zayna T King
- Department of Cell Biology and Physiology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Wesley R Legant
- Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - James E Bear
- Department of Cell Biology and Physiology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|