1
|
Dumbali SP, Horton PD, Moore TI, Wenzel PL. Mitochondrial permeability transition dictates mitochondrial maturation upon switch in cellular identity of hematopoietic precursors. Commun Biol 2024; 7:967. [PMID: 39122870 PMCID: PMC11316084 DOI: 10.1038/s42003-024-06671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The mitochondrial permeability transition pore (mPTP) is a supramolecular channel that regulates exchange of solutes across cristae membranes, with executive roles in mitochondrial function and cell death. The contribution of the mPTP to normal physiology remains debated, although evidence implicates the mPTP in mitochondrial inner membrane remodeling in differentiating progenitor cells. Here, we demonstrate that strict control over mPTP conductance shapes metabolic machinery as cells transit toward hematopoietic identity. Cells undergoing the endothelial-to-hematopoietic transition (EHT) tightly control chief regulatory elements of the mPTP. During EHT, maturing arterial endothelium restricts mPTP activity just prior to hematopoietic commitment. After transition in cellular identity, mPTP conductance is restored. In utero treatment with NIM811, a molecule that blocks sensitization of the mPTP to opening by Cyclophilin D (CypD), amplifies oxidative phosphorylation (OXPHOS) in hematopoietic precursors and increases hematopoiesis in the embryo. Additionally, differentiating pluripotent stem cells (PSCs) acquire greater organization of mitochondrial cristae and hematopoietic activity following knockdown of the CypD gene, Ppif. Conversely, knockdown of Opa1, a GTPase critical for proper cristae architecture, induces cristae irregularity and impairs hematopoiesis. These data elucidate a mechanism that regulates mitochondrial maturation in hematopoietic precursors and underscore a role for the mPTP in the acquisition of hematopoietic fate.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulina D Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Pamela L Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Molecular & Translational Biology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Qiu J, Menon V, Tzavaras N, Liang R, Ghaffari S. Protocol to identify and analyze mouse and human quiescent hematopoietic stem cells using flow cytometry combined with confocal imaging. STAR Protoc 2022; 3:101828. [PMID: 36595934 PMCID: PMC9676629 DOI: 10.1016/j.xpro.2022.101828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial membrane potential (MMP) segregates functionally distinct subsets within highly purified hematopoietic stem cells (HSCs). Here, we detail a protocol for FACS isolation of MMP sub-fractions of phenotypically defined mouse and human HSCs. These steps are followed by high-/super-resolution immunofluorescence microscopy of HSCs' lysosomes. While the protocol describes the isolation of quiescent HSCs, which are the most potent subsets, it could also be applied to other HSC subsets. This protocol overcomes some experimental challenges associated with low HSC numbers. For complete details on the use and execution of this protocol, please refer to Liang et al. (2020) and Qiu et al. (2021).
Collapse
Affiliation(s)
- Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nikolaos Tzavaras
- Department of Neuroscience and Microscopy CoRE, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Morganti C, Ito K, Yanase C, Verma A, Teruya‐Feldstein J, Ito K. NPM1 ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by p53 loss. EMBO Rep 2022; 23:e54262. [PMID: 35229971 PMCID: PMC9066051 DOI: 10.15252/embr.202154262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with morphologic dysplasia and a propensity to transform into overt acute myeloid leukemia (AML). Our analysis of two cohorts of 20 MDS and 49 AML with multi-lineage dysplasia patients shows a reduction in Nucleophosmin 1 (NPM1) expression in 70% and 90% of cases, respectively. A mouse model of Npm1 conditional knockout (cKO) in hematopoietic cells reveals that Npm1 loss causes premature aging of hematopoietic stem cells (HSCs). Mitochondrial activation in Npm1-deficient HSCs leads to aberrant activation of the NLRP3 inflammasome, which correlates with a developing MDS-like phenotype. Npm1 cKO mice exhibit shortened survival times, and expansion of both the intra- and extra-medullary myeloid populations, while evoking a p53-dependent response. After transfer into a p53 mutant background, the resulting Npm1/p53 double KO mice develop fatal leukemia within 6 months. Our findings identify NPM1 as a regulator of HSC aging and inflammation and highlight the role of p53 in MDS progression to leukemia.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Amit Verma
- Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Julie Teruya‐Feldstein
- Department of PathologyIcahn School of MedicineMount SinaiNew YorkNYUSA,Department of PathologySloan‐Kettering InstituteMemorial Sloan‐Kettering Cancer CenterNew YorkNYUSA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
4
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci 2021; 22:11117. [PMID: 34681777 PMCID: PMC8537916 DOI: 10.3390/ijms222011117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Mochizuki-Kashio M, Shiozaki H, Suda T, Nakamura-Ishizu A. Mitochondria Turnover and Lysosomal Function in Hematopoietic Stem Cell Metabolism. Int J Mol Sci 2021; 22:4627. [PMID: 33924874 PMCID: PMC8124492 DOI: 10.3390/ijms22094627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Makiko Mochizuki-Kashio
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Hiroko Shiozaki
- Department of Hematology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, Singapore 117599, Singapore;
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Ayako Nakamura-Ishizu
- Microanatomy and Developmental Biology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| |
Collapse
|
7
|
Nakamura-Ishizu A, Ito K, Suda T. Hematopoietic Stem Cell Metabolism during Development and Aging. Dev Cell 2021; 54:239-255. [PMID: 32693057 DOI: 10.1016/j.devcel.2020.06.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
Cellular metabolism in hematopoietic stem cells (HSCs) is an area of intense research interest, but the metabolic requirements of HSCs and their adaptations to their niches during development have remained largely unaddressed. Distinctive from other tissue stem cells, HSCs transition through multiple hematopoietic sites during development. This transition requires drastic metabolic shifts, insinuating the capacity of HSCs to meet the physiological demand of hematopoiesis. In this review, we highlight how mitochondrial metabolism determines HSC fate, and especially focus on the links between mitochondria, endoplasmic reticulum (ER), and lysosomes in HSC metabolism.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, MD6, 117599 Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto City 860-0811, Japan.
| |
Collapse
|
8
|
Morganti C, Bonora M, Ito K, Ito K. Electron transport chain complex II sustains high mitochondrial membrane potential in hematopoietic stem and progenitor cells. Stem Cell Res 2019; 40:101573. [PMID: 31539857 PMCID: PMC6802285 DOI: 10.1016/j.scr.2019.101573] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 02/08/2023] Open
Abstract
The role of mitochondria in the fate determination of hematopoietic stem and progenitor cells (HSPCs) is not solely limited to the switch from glycolysis to oxidative phosphorylation, but also involves alterations in mitochondrial features and properties, including mitochondrial membrane potential (ΔΨmt). HSPCs have a high ΔΨmt even when the rates of respiration and phosphorylation are low, and we have previously shown that the minimum proton flow through ATP synthesis (or complex V) enables high ΔΨmt in HSPCs. Here we show that HSPCs sustain a unique equilibrium between electron transport chain (ETC) complexes and ATP production. HSPCs exhibit high expression of ETC complex II, which sustains complex III in proton pumping, although the expression levels of complex I or V are relatively low. Complex II inhibition by TTFA caused a substantial decrease of ΔΨmt, particularly in HSPCs, while the inhibition of complex I by Rotenone mainly affected mature populations. Functionally, pharmacological inhibition of complex II reduced in vitro colony-replating capacity but this was not observed when complex I was inhibited, which supports the distinct roles of complex I and II in HSPCs. Taken together, these data highlight complex II as a key regulator of ΔΨmt in HSPCs and open new and interesting questions regarding the precise mechanisms that regulate mitochondrial control to maintain hematopoietic stem cell self-renewal.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, USA; Departments of Cell Biology and Stem Cell Institute, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, USA.
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, USA; Departments of Cell Biology and Stem Cell Institute, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, USA.
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, USA; Departments of Cell Biology and Stem Cell Institute, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, USA.
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, USA; Departments of Cell Biology and Stem Cell Institute, USA; Department of Medicine (Hemato-Oncology), Montefiore Medical Center, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|