1
|
O'Sullivan SJ, McIntosh-Clarke D, Park J, Vadigepalli R, Schwaber JS. Single Cell Scale Neuronal and Glial Gene Expression and Putative Cell Phenotypes and Networks in the Nucleus Tractus Solitarius in an Alcohol Withdrawal Time Series. Front Syst Neurosci 2021; 15:739790. [PMID: 34867221 PMCID: PMC8641127 DOI: 10.3389/fnsys.2021.739790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Alcohol withdrawal syndrome (AWS) is characterized by neuronal hyperexcitability, autonomic dysregulation, and severe negative emotion. The nucleus tractus solitarius (NTS) likely plays a prominent role in the neurological processes underlying these symptoms as it is the main viscerosensory nucleus in the brain. The NTS receives visceral interoceptive inputs, influences autonomic outputs, and has strong connections to the limbic system and hypothalamic-pituitary-adrenal axis to maintain homeostasis. Our prior analysis of single neuronal gene expression data from the NTS shows that neurons exist in heterogeneous transcriptional states that form distinct functional subphenotypes. Our working model conjectures that the allostasis secondary to alcohol dependence causes peripheral and central biological network decompensation in acute abstinence resulting in neurovisceral feedback to the NTS that substantially contributes to the observed AWS. We collected single noradrenergic and glucagon-like peptide-1 (GLP-1) neurons and microglia from rat NTS and measured a subset of their transcriptome as pooled samples in an alcohol withdrawal time series. Inflammatory subphenotypes predominate at certain time points, and GLP-1 subphenotypes demonstrated hyperexcitability post-withdrawal. We hypothesize such inflammatory and anxiogenic signaling contributes to alcohol dependence via negative reinforcement. Targets to mitigate such dysregulation and treat dependence can be identified from this dataset.
Collapse
Affiliation(s)
- Sean J O'Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Damani McIntosh-Clarke
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James Park
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States.,Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - James S Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Liotta LA, Pappalardo PA, Carpino A, Haymond A, Howard M, Espina V, Wulfkuhle J, Petricoin E. Laser Capture Proteomics: spatial tissue molecular profiling from the bench to personalized medicine. Expert Rev Proteomics 2021; 18:845-861. [PMID: 34607525 PMCID: PMC10720974 DOI: 10.1080/14789450.2021.1984886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.
Collapse
Affiliation(s)
- Lance A. Liotta
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Philip A. Pappalardo
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Alan Carpino
- Fluidigm Corporation, South San Francisco, CA, USA
| | - Amanda Haymond
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Marissa Howard
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Virginia Espina
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Julie Wulfkuhle
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| | - Emanuel Petricoin
- Center For Applied Proteomics and Molecular Medicine (CAPMM) School of Systems Biology, College of Sciences, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|