1
|
Athertya JS, Akers J, Sedaghat S, Wei Z, Moazamian D, Dwek S, Thu M, Jang H. Detection of iron oxide nanoparticle (IONP)-labeled stem cells using quantitative ultrashort echo time imaging: a feasibility study. Quant Imaging Med Surg 2023; 13:585-597. [PMID: 36819276 PMCID: PMC9929408 DOI: 10.21037/qims-22-654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023]
Abstract
Background In this study, we investigated the feasibility of quantitative ultrashort echo time (qUTE) magnetic resonance (MR) imaging techniques in the detection and quantification of iron oxide nanoparticle (IONP)-labeled stem cells. Methods A stem cell phantom containing multiple layers of unlabeled or labeled stem cells with different densities was prepared. The phantom was imaged with quantitative UTE (qUTE) MR techniques [i.e., UTE-T1 mapping, UTE-T2* mapping, and UTE-based quantitative susceptibility mapping (UTE-QSM)] as well as with a clinical T2 mapping sequence on a 3T clinical MR system. For T1 mapping, a variable flip angle (VFA) method based on actual flip angle imaging (AFI) technique was utilized. For T2* mapping and UTE-QSM, multiple images with variable, interleaved echo times including UTE images and gradient recalled echo (GRE) images were used. For UTE-QSM, the phase information from the multi-echo images was utilized and processed using a QSM framework based on the morphology-enabled dipole inversion (MEDI) algorithm. The qUTE techniques were also evaluated in an ex vivo experiment with a mouse injected with IONP-labeled stem cells. Results In the phantom experiment, the parameters estimated with qUTE techniques showed high linearity with respect to the density of IONP-labeled stem cells (R2>0.99), while the clinical T2 parameter showed impaired linearity (R2=0.87). In the ex vivo mouse experiment, UTE-T2* mapping and UTE-QSM showed feasibility in the detection of injected stem cells with high contrast, whereas UTE-T1 and UTE-T2* showed limited detection. Overall, UTE-QSM demonstrated the best contrast of all, with other methods being subjected more to a confounding factor due to different magnetic susceptibilities of various types of neighboring tissues, which creates inhomogeneous contrast that behaves similar to IONP. Conclusions In this study, we evaluated the feasibility of a series of qUTE imaging techniques as well as conventional T2 mapping for the detection of IONP-labeled stem cells in vitro and ex vivo. UTE-QSM performed superior amongst other qUTE techniques as well as conventional T2 mapping in detecting stem cells with high contrast.
Collapse
Affiliation(s)
- Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | | | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| | - Mya Thu
- VisiCELL Medical Inc., San Diego, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Will S, Martirosian P, Eibofner F, Schick F, Bantleon R, Vaegler M, Grözinger G, Claussen CD, Kramer U, Schmehl J. Viability and MR detectability of iron labeled mesenchymal stem cells used for endoscopic injection into the porcine urethral sphincter. NMR IN BIOMEDICINE 2015; 28:1049-1058. [PMID: 26147577 DOI: 10.1002/nbm.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Direct stem cell therapies for functionally impaired tissue require a sufficient number of cells in the target region and a method for verifying the fate of the cells in the subsequent time course. In vivo MRI of iron labeled mesenchymal stem cells has been suggested to comply with these requirements. The study was conducted to evaluate proliferation, migration, differentiation and adhesion effects as well as the obtained iron load of an iron labeling strategy for mesenchymal stem cells. After injection into the porcine urethral sphincter, the labeled cells were monitored for up to six months using MRI. Mesenchymal stem cells were labeled with ferucarbotran (60/100/200 µg/mL) and ferumoxide (200 µg/mL) for the analysis of migration and viability. Phantom MR measurements were made to evaluate effects of iron labeling. For short and long term studies, the iron labeled cells were injected into the porcine urethral sphincter and monitored by MRI. High resolution anatomical images of the porcine urethral sphincter were applied for detection of the iron particles with a turbo-spin-echo sequence and a gradient-echo sequence with multiple TE values. The MR images were then compared with histological staining. The analysis of cell function after iron labeling showed no effects on proliferation or differentiation of the cells. Although the adherence increases with higher iron dose, the ability to migrate decreases as a presumed effect of iron labeling. The iron labeled mesenchymal stem cells were detectable in vivo in MRI and histological staining even six months after injection. Labeling with iron particles and subsequent evaluation with highly resolved three dimensional data acquisition allows sensitive tracking of cells injected into the porcine urethral sphincter for several months without substantial biological effects on mesenchymal stem cells.
Collapse
Affiliation(s)
- Susanne Will
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Petros Martirosian
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Frank Eibofner
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Fritz Schick
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Tübingen, Germany
| | - Rüdiger Bantleon
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Martin Vaegler
- University of Tuebingen, Department of Urology, Laboratory of Tissue Engineering, Tübingen, Germany
| | - Gerd Grözinger
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Claus D Claussen
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Ulrich Kramer
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| | - Jörg Schmehl
- University of Tuebingen, Department of Diagnostic and Interventional Radiology, Tübingen, Germany
| |
Collapse
|
3
|
Belmar-Lopez C, Mendoza G, Oberg D, Burnet J, Simon C, Cervello I, Iglesias M, Ramirez JC, Lopez-Larrubia P, Quintanilla M, Martin-Duque P. Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth. BMC Med 2013; 11:139. [PMID: 23710709 PMCID: PMC3670996 DOI: 10.1186/1741-7015-11-139] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/19/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior.The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications. METHODS We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes. RESULTS Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth. CONCLUSION This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage.
Collapse
|
4
|
Khurana A, Nejadnik H, Chapelin F, Lenkov O, Gawande R, Lee S, Gupta SN, Aflakian N, Derugin N, Messing S, Lin G, Lue TF, Pisani L, Daldrup-Link HE. Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI. Nanomedicine (Lond) 2013; 8:1969-83. [PMID: 23534832 DOI: 10.2217/nnm.12.198] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To develop a clinically applicable MRI technique for tracking stem cells in matrix-associated stem-cell implants, using the US FDA-approved iron supplement ferumoxytol. MATERIALS & METHODS Ferumoxytol-labeling of adipose-derived stem cells (ADSCs) was optimized in vitro. A total of 11 rats with osteochondral defects of both femurs were implanted with ferumoxytol- or ferumoxides-labeled or unlabeled ADSCs, and underwent MRI up to 4 weeks post matrix-associated stem-cell implant. The signal-to-noise ratio of different matrix-associated stem-cell implant was compared with t-tests and correlated with histopathology. RESULTS An incubation concentration of 500 µg iron/ml ferumoxytol and 10 µg/ml protamine sulfate led to significant cellular iron uptake, T2 signal effects and unimpaired ADSC viability. In vivo, ferumoxytol- and ferumoxides-labeled ADSCs demonstrated significantly lower signal-to-noise ratio values compared with unlabeled controls (p < 0.01). Histopathology confirmed engraftment of labeled ADSCs, with slow dilution of the iron label over time. CONCLUSION Ferumoxytol can be used for in vivo tracking of stem cells with MRI.
Collapse
Affiliation(s)
- Aman Khurana
- Department of Radiology & Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Nejadnik H, Henning TD, Do T, Sutton EJ, Baehner F, Horvai A, Sennino B, McDonald D, Meier R, Misselwitz B, Link TM, Daldrup-Link HE. MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects. PLoS One 2012; 7:e49971. [PMID: 23251354 PMCID: PMC3520977 DOI: 10.1371/journal.pone.0049971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Objectives The purpose of our study was to assess the chondrogenic potential and the MR signal effects of GadofluorineM-Cy labeled matrix associated stem cell implants (MASI) in pig knee specimen. Materials and Methods Human mesenchymal stem cells (hMSCs) were labeled with the micelle-based contrast agent GadofluorineM-Cy. Ferucarbotran-labeled hMSCs, non-labeled hMSCs and scaffold only served as controls. Chondrogenic differentiation was induced and gene expression and histologic evaluation were performed. The proportions of spindle-shaped vs. round cells of chondrogenic pellets were compared between experimental groups using the Fisher's exact test. Labeled and unlabeled hMSCs and chondrocytes in scaffolds were implanted into cartilage defects of porcine femoral condyles and underwent MR imaging with T1- and T2-weighted SE and GE sequences. Contrast-to-noise ratios (CNR) between implants and adjacent cartilage were determined and analyzed for significant differences between different experimental groups using the Kruskal-Wallis test. Significance was assigned for p<0.017, considering a Bonferroni correction for multiple comparisons. Results Collagen type II gene expression levels were not significantly different between different groups (p>0.017). However, hMSC differentiation into chondrocytes was superior for unlabeled and GadofluorineM-Cy-labeled cells compared with Ferucarbotran-labeled cells, as evidenced by a significantly higher proportion of spindle cells in chondrogenic pellets (p<0.05). GadofluorineM-Cy-labeled hMSCs and chondrocytes showed a positive signal effect on T1-weighted images and a negative signal effect on T2-weighted images while Ferucarbotran-labeled cells provided a negative signal effect on all sequences. CNR data for both GadofluorineM-Cy-labeled and Ferucarbotran-labeled hMSCs were significantly different compared to unlabeled control cells on T1-weighted SE and T2*-weighted MR images (p<0.017). Conclusion hMSCs can be labeled by simple incubation with GadofluorineM-Cy. The labeled cells provide significant MR signal effects and less impaired chondrogenesis compared to Ferucarbotran-labeled hMSCs. Thus, GadoflurineM-Cy might represent an alternative MR cell marker to Ferucarbotran, which is not distributed any more in Europe or North America.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Stanford University, Stanford, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grogan SP, Pauli C, Chen P, Du J, Chung CB, Kong SD, Colwell CW, Lotz MK, Jin S, D'Lima DD. In situ tissue engineering using magnetically guided three-dimensional cell patterning. Tissue Eng Part C Methods 2012; 18:496-506. [PMID: 22224660 DOI: 10.1089/ten.tec.2011.0525] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Manipulation of cell patterns in three dimensions in a manner that mimics natural tissue organization and function is critical for cell biological studies and likely essential for successfully regenerating tissues--especially cells with high physiological demands, such as those of the heart, liver, lungs, and articular cartilage.(1, 2) In the present study, we report on the feasibility of arranging iron oxide-labeled cells in three-dimensional hydrogels using magnetic fields. By manipulating the strength, shape, and orientation of the magnetic field and using crosslinking gradients in hydrogels, multi-directional cell arrangements can be produced in vitro and even directly in situ. We show that these ferromagnetic particles are nontoxic between 0.1 and 10 mg/mL; certain species of particles can permit or even enhance tissue formation, and these particles can be tracked using magnetic resonance imaging. Taken together, this approach can be adapted for studying basic biological processes in vitro, for general tissue engineering approaches, and for producing organized repair tissues directly in situ.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopaedic Research and Education, Scripps Clinic, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Castaneda RT, Khurana A, Khan R, Daldrup-Link HE. Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle. J Vis Exp 2011:e3482. [PMID: 22083287 DOI: 10.3791/3482] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM(-1) sec(-1) strength. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure. Our group has applied this agent in an "off label" use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Collapse
|
8
|
Fu Y, Azene N, Xu Y, Kraitchman DL. Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques. ACTA ACUST UNITED AC 2011; 3:473-486. [PMID: 22287982 DOI: 10.2217/iim.11.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite rapid translation of stem cell therapy into clinical practice, the treatment of cardiovascular disease using embryonic stem cells, adult stem and progenitor cells or induced pluripotent stem cells has not yielded satisfactory results to date. Noninvasive stem cell imaging techniques could provide greater insight into not only the therapeutic benefit, but also the fundamental mechanisms underlying stem cell fate, migration, survival and engraftment in vivo. This information could also assist in the appropriate choice of stem cell type(s), delivery routes and dosing regimes in clinical cardiovascular stem cell trials. Multiple imaging modalities, such as MRI, PET, SPECT and CT, have emerged, offering the ability to localize, monitor and track stem cells in vivo. This article discusses stem cell labeling approaches and highlights the latest cardiac stem cell imaging techniques that may help clinicians, research scientists or other healthcare professionals select the best cellular therapeutics for cardiovascular disease management.
Collapse
Affiliation(s)
- Yingli Fu
- Russell H Morgan Department of Radiology & Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
9
|
Hong H, Yang Y, Zhang Y, Cai W. Non-invasive imaging of human embryonic stem cells. Curr Pharm Biotechnol 2011; 11:685-92. [PMID: 20497109 DOI: 10.2174/138920110792246500] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 03/29/2010] [Indexed: 11/22/2022]
Abstract
Human embryonic stem cells (hESCs) hold tremendous therapeutic potential in a variety of diseases. Over the last decade, non-invasive imaging techniques have proven to be of great value in tracking transplanted hESCs. This review article will briefly summarize the various techniques used for non-invasive imaging of hESCs, which include magnetic resonance imaging (MRI), bioluminescence imaging (BLI), fluorescence, single-photon emission computed tomography (SPECT), positron emission tomography (PET), and multimodality approaches. Although the focus of this review article is primarily on hESCs, the labeling/tracking strategies described here can be readily applied to other (stem) cell types as well. Non-invasive imaging can provide convenient means to monitor hESC survival, proliferation, function, as well as overgrowth (such as teratoma formation), which could not be readily investigated previously. The requirement for hESC tracking techniques depends on the clinical scenario and each imaging technique will have its own niche in preclinical/clinical research. Continued evolvement of non-invasive imaging techniques will undoubtedly contribute to significant advances in understanding stem cell biology and mechanisms of action.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705-2275, USA
| | | | | | | |
Collapse
|
10
|
Targeting of embryonic stem cells by peptide-conjugated quantum dots. PLoS One 2010; 5:e12075. [PMID: 20711469 PMCID: PMC2919412 DOI: 10.1371/journal.pone.0012075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/18/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Targeting stem cells holds great potential for studying the embryonic stem cell and development of stem cell-based regenerative medicine. Previous studies demonstrated that nanoparticles can serve as a robust platform for gene delivery, non-invasive cell imaging, and manipulation of stem cell differentiation. However specific targeting of embryonic stem cells by peptide-linked nanoparticles has not been reported. METHODOLOGY/PRINCIPAL FINDINGS Here, we developed a method for screening peptides that specifically recognize rhesus macaque embryonic stem cells by phage display and used the peptides to facilitate quantum dot targeting of embryonic stem cells. Through a phage display screen, we found phages that displayed an APWHLSSQYSRT peptide showed high affinity and specificity to undifferentiated primate embryonic stem cells in an enzyme-linked immunoabsorbent assay. These results were subsequently confirmed by immunofluorescence microscopy. Additionally, this binding could be completed by the chemically synthesized APWHLSSQYSRT peptide, indicating that the binding capability was specific and conferred by the peptide sequence. Through the ligation of the peptide to CdSe-ZnS core-shell nanocrystals, we were able to, for the first time, target embryonic stem cells through peptide-conjugated quantum dots. CONCLUSIONS/SIGNIFICANCE These data demonstrate that our established method of screening for embryonic stem cell specific binding peptides by phage display is feasible. Moreover, the peptide-conjugated quantum dots may be applicable for embryonic stem cell study and utilization.
Collapse
|
11
|
Nedopil AJ, Mandrussow LG, Daldrup-Link HE. Implantation of ferumoxides labeled human mesenchymal stem cells in cartilage defects. J Vis Exp 2010:1793. [PMID: 20368696 PMCID: PMC2900275 DOI: 10.3791/1793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo(1, 2). In order to provide local retention and viability of transplanted MSCs in cartilage defects, a scaffold is needed, which also supports subsequent differentiation and proliferation. The architecture of the scaffold guides tissue formation and permits the extracellular matrix, produced by the stem cells, to expand. Previous investigations have shown that a 2% agarose scaffold may support the development of stable hyaline cartilage and does not induce immune responses(3). Long term retention of transplanted stem cells in MASI is critical for cartilage regeneration. Labeling of MSCs with iron oxide nanoparticles allows for long-term in vivo tracking with non-invasive MR imaging techniques(4). This presentation will demonstrate techniques for labeling MSCs with iron oxide nanoparticles, the generation of cell-agarose constructs and implantation of these constructs into cartilage defects. The labeled constructs can be tracked non-invasively with MR-Imaging.
Collapse
Affiliation(s)
- Alexander J Nedopil
- Department of Radiology and Biomedical Imaging, Medical Center, University of California San Francisco, USA
| | | | | |
Collapse
|
12
|
Abstract
Despite promising preclinical data, the treatment of cardiovascular diseases using embryonic, bone-marrow-derived, and skeletal myoblast stem cells has not yet come to fruition within mainstream clinical practice. Major obstacles in cardiac stem cell investigations include the ability to monitor cell engraftment and survival following implantation within the myocardium. Several cellular imaging modalities, including reporter gene and MRI-based tracking approaches, have emerged that provide the means to identify, localize, and monitor stem cells longitudinally in vivo following implantation. This Review will examine the various cardiac cellular tracking modalities, including the combinatorial use of several probes in multimodality imaging, with a focus on data from the past 5 years.
Collapse
|