1
|
Wang J, Zheng Q, Shi M, Wang H, Fan C, Wang G, Zhao Y, Si J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals (Basel) 2023; 16:1351. [PMID: 37895822 PMCID: PMC10610263 DOI: 10.3390/ph16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang, and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore bioactive components from F. sinkiangensis, three new lignans and thirteen known components were isolated. The structural elucidation of the components was established utilizing spectroscopic analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and 2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α, IL-1β, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the receptors with strong binding energies of -5.84~-10.79 kcal/mol. In addition, compound 6 inhibited the proliferation of AGS gastric cancer cells with IC50 values of 15.2 μM by suppressing the cell migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential resource for bioactive components.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Minghui Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (M.S.); (C.F.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
2
|
Ghodousi-Dehnavi E, Arjmand M, Akbari Z, Aminzadeh M, Haji Hosseini R. Anti-Cancer Effect of Dorema Ammoniacum Gum by Targeting Metabolic Reprogramming by Regulating APC, P53, KRAS Gene Expression in HT-29 Human Colon Cancer Cells. Rep Biochem Mol Biol 2023; 12:127-135. [PMID: 37724146 PMCID: PMC10505474 DOI: 10.52547/rbmb.12.1.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
Background Colorectal cancer is a heterogeneous disease that leads to metabolic disorders due to multiple upstream genetic and molecular changes and interactions. The development of new therapies, especially herbal medicines, has received much global attention. Dorema ammoniacum is a medicinal plant. Its gum is used in healing known ailments. Studying metabolome profiles based on nuclear magnetic resonance 1HNMR as a non-invasive and reproducible tool can identify metabolic changes as a reflection of intracellular fluxes, especially in drug responses. This study aimed to investigate the anti-cancer effects of different gum extracts on metabolic changes and their impact on gene expression in HT-29 cell. Methods Extraction of Dorema ammoniacum gum with hexane, chloroform, and dichloromethane organic solvents was performed. Cell inhibition growth percentage and IC50 were assessed. Following treating the cells with dichloromethane extract, p53, APC, and KRAS gene expression were determined. 1HNMR spectroscopy was conducted. Eventually, systems biology software tools interpreted combined metabolites and genes simultaneously. Results The lowest determined IC50 concentration was related to dichloromethane solvent, and the highest was hexane and chloroform. The expression of the KRAS oncogene gene decreased significantly after treatment with dichloromethane extract compared to the control group, and the expression of tumor suppressor gene p53 and APC increased significantly. Most gene-altered convergent metabolic phenotypes. Conclusion This study's results indicate that the dichloromethane solvent of Dorema ammoniacum gum exhibits its antitumor properties by altering the expression of genes involved in HT-29 cells and the consequent change in downstream metabolic reprogramming.
Collapse
Affiliation(s)
| | - Mohammad Arjmand
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Ziba Akbari
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Mansour Aminzadeh
- Metabolomics Lab. Department of Biochemistry, Pasteur Institute of Iran, Pasteur Avenue, Tehran, Iran.
| | - Reza Haji Hosseini
- Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran.
| |
Collapse
|
3
|
Siahpoosh A, Malayeri A, Salimi A, Khorsandi L, Abdevand ZZ. Determination of the effectiveness of Dorema ammoniacum gum on wound healing: an experimental study. J Wound Care 2022; 31:S16-S27. [PMID: 36240871 DOI: 10.12968/jowc.2022.31.sup10.s16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE For a long time, natural compounds have been used to accelerate wound healing. In this study, the topical effects of ammoniacum gum extract on wound healing were investigated in white male rats. METHOD Following skin wound induction in aseptic conditions, 48 Wistar rats were divided into six equal groups; phenytoin cream 1% (standard), untreated (control), Eucerin (control), and 5%, 10% and 20% ointments of Dorema ammoniacum gum extract (treatment groups). All experimental groups received topical drugs daily for 14 days. The percentage of wound healing, hydroxyproline content, histological parameters, and growth factors (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-α) were measured in experimental groups. RESULTS The areas of the wounds in the treatment groups were significantly decreased compared with the wound areas of control groups at 5, 7 and 10 days after wounding. On the 12th day, the wounds in the treatment groups were completely healed. Hydroxyproline contents were significantly increased in the treatment groups compared with the control groups (p<0.001). In histological evaluation, the re-epithelialisation, increasing thickness of the epithelial layer, granulation tissue and neovascularisation parameters in the treatment groups showed significant increases compared with the control groups. Also, serum levels of TGF-β, PDGF, EGF and VEGF in the treatment groups were significantly increased compared to the control groups. CONCLUSION The topical application of ammoniacum gum extract significantly increases the percentage of wound healing in rats and reduces the time of wound closure.
Collapse
Affiliation(s)
- Amir Siahpoosh
- Department of Pharmacognosy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anayatollah Salimi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Science Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Zaheri Abdevand
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Persian Medicine and Pharmacy, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Evaluation of the Cytotoxicity of Aqueous Extract and Oleo-Essential Oil of Dorema ammoniacum Plant Oleo-Gum Resin in Some Human Cancer Cell Lines. Anal Cell Pathol (Amst) 2022; 2022:9725244. [PMID: 35983460 PMCID: PMC9381248 DOI: 10.1155/2022/9725244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Results Aqueous extract and essential oil reduced the viability of A549 cancer cells in a concentration-dependent manner. The lowest inhibitory concentrations (IC50) for both samples of D. ammoniacum oleo-gum resin were 10 and 2.5 μg/ml for 24 hours in A549 cell line, respectively. After treatment with extract and essential oil of D. ammoniacum oleo-gum resin, ROS increased significantly compared to the control group. Although changes in caspase-3 did not show a significant increase in extract, the caspase-3 was found to be increased after exposure to essential oil and caspase-9 was downregulated after exposure to essential oil. Also, exposure to essential oil of D. ammoniacum caused a reduction in MMP level. Conclusion Based on results, the cytotoxic effect of essential oil of D. ammoniacum can induce apoptosis toward A549 cell line via induction of oxidative stress, MMP depletion, and caspase-3 activation, which is independent to mitochondrial cytochrome c release and caspase-9 function.
Collapse
|
5
|
Purification, structural characterization and antioxidant activity of a new arabinogalactan from Dorema ammoniacum gum. Int J Biol Macromol 2022; 194:1019-1028. [PMID: 34848241 DOI: 10.1016/j.ijbiomac.2021.11.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/24/2023]
Abstract
Gum ammoniacum is a polymer obtained from Dorema ammoniacum and its medicinal use was already known to the ancient times. In this study, a new D. ammoniacum carbohydrate (DAC-1) with a molecular weight of 27.1 kDa was extracted by hot water and then purified on DEAE-52-cellulose and Sephadex G-100 columns. The structural features of DAC-1 were investigated by partial acid hydrolysis, fourier-transform infrared spectroscopy (FT-IR), methylation, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), and 1D and 2D nuclear magnetic resonance spectroscopy (1D & 2D NMR). The results indicated that DAC-1 was an arabinogalactan including galactose, arabinose, rhamnose, glucuronic acid and 4-O-methyl-β-d-glucopyranosyl uronic acid (meGlcpA) with a relative percentage of 44.63%, 23.30%, 13.46%. 12.47%, and 6.14%. The structure units of DAC-1 were elucidated as 3,1)-β-D-Galp-(6 → 1)-β-D-Galp-(3,6 → containing four branch chains of →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-GlcpA-(4 → 1)-α-L-Rhap-T (two times), →1,6)-β-D-Galp-(3→1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-α-L-Araf-T and →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-meGlcpA-T. X-ray diffraction (XRD) pattern indicated a semi-crystalline structure. Thermal behavior of the polysaccharide was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and revealed temperatures higher than 200 °C as dominant region of weight loss. DAC-1 showed acceptable antioxidant activity when analyzed by DPPH, ABTS, FRAP, and OH radical removal methods.
Collapse
|
6
|
Nazir N, Nisar M, Zahoor M, Uddin F, Ullah S, Ullah R, Ansari SA, Mahmood HM, Bari A, Alobaid A. Phytochemical Analysis, In Vitro Anticholinesterase, Antioxidant Activity and In Vivo Nootropic Effect of Ferula ammoniacum ( Dorema ammoniacum) D. Don. in Scopolamine-Induced Memory Impairment in Mice. Brain Sci 2021; 11:brainsci11020259. [PMID: 33669503 PMCID: PMC7922987 DOI: 10.3390/brainsci11020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Ferula ammoniacum (D. Don) is one of the endemic medicinal plants that is traditionally used to treat a number of diseases. Although the plant has been used to enhance memory, the investigational evidence supporting the nootropic effect was unsubstantial. Hence, the rationale for this study was to assess the potential beneficial effect of F. ammoniacum seed extracts on learning and memory in mice. Methods: The powdered plant samples (aerial parts) were subjected to extraction ad fractionation. Among the extracts, crude and ethyl acetate extracts were screened for major phytochemicals through HPLC analysis. All the extracts were evaluated for the in vitro anticholinesterase (AChE and BChE) and antioxidant potentials. Among the extracts the active fraction was further assessed for improving learning and memory in mice using behavioural tests like Y-maze and novel object recognition test (NORT) using standard protocols. After behavioural tests, all the animals were sacrificed and brains tissues were assessed for the ex vivo anticholinesterase and antioxidant potentials. Results: Phytochemicals like chlorogenic acid, quercetin, mandelic acid, phloroglucinol, hydroxy benzoic acid, malic acid, epigallocatechin gallate, ellagic acid, rutin, and pyrogallol were identified in crude methanolic extract (Fa.Met) and ethyl acetate fraction (Fa.EtAc) through HPLC. Fa.EtAc and Fa.Chf extracts more potently inhibited AChE and BChE with IC50 values of 40 and 43 µg/mL, and 41 and 42 µg/mL, respectively. Similarly highest free radical scavenging potential was exhibited by Fa.EtAc fraction against DPPH (IC50 = 100 µg/mL) and ABTS (IC50 = 120 µg/mL). The extract doses, 100 and 200 mg/kg body weight significantly (p < 0.01) improved the short-term memory by increasing the percent spontaneous alternation in the Y-maze test along with increasing discrimination index in the NORT that clearly indicated the enhancement in the recognition memory of mice. Conclusion: The extracts more potently scavenged the tested free radicals, exhibited anticholinesterase activities, improved the learning abilities and reduced the memory impairment induced by scopolamine in mice model thus suggesting that these extracts could be effectively used for the management of oxidative stress, neurodegenerative diseases and memory loss.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
- Correspondence:
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan;
| | - Faheem Uddin
- Department of Engineering, Sarhad University of Information Technology, Peshawar 23000, Pakistan;
| | - Saeed Ullah
- Saidu Group of Teaching Hospital Swat, Khyber Pakhtunkhwa 19130, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| | - Abdulrehman Alobaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.A.); (A.B.); (A.A.)
| |
Collapse
|
7
|
Etemadi-Tajbakhsh N, Faramarzi MA, Delnavazi MR. 1, 5-dicaffeoylquinic acid, an α-glucosidase inhibitor from the root of Dorema ammoniacum D. Don. Res Pharm Sci 2020; 15:429-436. [PMID: 33628284 PMCID: PMC7879791 DOI: 10.4103/1735-5362.297845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/25/2020] [Accepted: 09/14/2020] [Indexed: 12/04/2022] Open
Abstract
Background and purpose: Dorema ammoniacum D. Don (Apiaceae family) is a perennial plant whose oleo- gum resin is used as a natural remedy for various diseases, especially chronic bronchitis, and asthma. In the present study, hydromethanolic extract of D. ammoniacum root was subjected to phytochemical analyses and α-glucosidase inhibitory potentials of the isolated compounds were assessed. Experimental approach: Silica gel (normal and reversed phases) and Sephadex® LH-20 column chromatographies were used for the isolation and purification of the compounds. Structures of the compounds were characterized by 1D and 2D nuclear magnetic resonance (NMR) techniques. All the isolated compounds were assessed for their in vitro α-glucosidase inhibitory activity in comparison with acarbose, a standard drug. Findings/Results: Two phloroacetophenone glycosides; echisoside (1) and pleoside (2), along with dihydroferulic acid-4-O-β-D-glucopyranoside (3), and β-resorcylic acid (4), and two caffeoylquinic acid derivatives; chlorogenic acid (5) and 1, 5-dicaffeoylquinic acid (cynarin, 6) were isolated. Among the isolated compounds, the α-glucosidase inhibitory effect of 1,5-dicaffeoylquinic acid was found as 76.9% of the acarbose activity at 750 μM (IC50 value of acarbose). Conclusion and implications: Considerable α-glucosidase inhibitory effect of 1,5-dicaffeoylquinic acid makes it an appropriate candidate for further studies in the development of new natural antidiabetic drugs.
Collapse
Affiliation(s)
- Nikdokht Etemadi-Tajbakhsh
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad-Ali Faramarzi
- Department of Medicinal Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad-Reza Delnavazi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
8
|
Khatami Z, Herdlinger S, Sarkhail P, Zehl M, Kaehlig H, Schuster D, Adhami HR. Isolation and Characterization of Acetylcholinesterase Inhibitors from Piper longum and Binding Mode Predictions. PLANTA MEDICA 2020; 86:1118-1124. [PMID: 32668479 DOI: 10.1055/a-1199-7084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Restoration of cholinergic function is considered a rational approach to enhance cognitive performance. Acetylcholinesterase inhibitors are still the best therapeutic option for Alzheimer's disease. The fruits of Piper longum have been used in traditional medicines for the treatment of memory loss. It was demonstrated that the dichloromethane extract of these fruits is able to inhibit acetylcholinesterase. Thus, the aim of this study was to identify the contained acetylcholinesterase inhibitors. The active zones were presented via TLC-bioautography, and five compounds were isolated in the process of a bioassay-guided phytochemical investigation. Their structures were characterized as piperine, methyl piperate, guineenisine, pipercide, and pellitorine using spectroscopy and spectrometry methods (UV, IR, MS, 1H-, and 13C-NMR). In vitro acetylcholinesterase inhibitory activities of the isolates and their IC50 values were determined via a colorimetric assay. Three of them exhibited enzyme inhibitory activities, with piperine being the most potent compound (IC50 of 0.3 mM). In order to investigate the binding mode of the tested compounds, docking studies were performed using the X-ray crystal structure of acetylcholinesterase from Tetronarce californica with the Protein Data Bank code 1EVE. The content of the active compounds in the extract was determined by a developed HPLC method. Piperine was present in the maximum quantity in the fruits (0.57%), whereas methyl piperate contained the minimum content (0.10%).
Collapse
Affiliation(s)
- Zakie Khatami
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Sonja Herdlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Parisa Sarkhail
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Martin Zehl
- Mass Spectrometry Centre & Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Hanspeter Kaehlig
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Hamid-Reza Adhami
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Isolation, in vitro evaluation and molecular docking of acetylcholinesterase inhibitors from South African Amaryllidaceae. Fitoterapia 2020; 146:104650. [PMID: 32479767 DOI: 10.1016/j.fitote.2020.104650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/29/2023]
Abstract
Inhibition of acetylcholinesterase (AChE) is considered a promising strategy for the treatment of Alzheimer's disease (AD) and dementia. Members of the Amaryllidaceae family are well known for their pharmacologically active alkaloids, including galanthamine, which is used to treat AD. The aim of this study was to evaluate the potential of South African Amaryllidaceae species to inhibit AChE, to isolate the active compounds, and probe their ability to bind the enzyme using molecular docking. The AChE inhibitory activity of extracts of 41 samples, representing 14 genera and 28 species, as well as isolated compounds, were evaluated in vitro using a qualitative thin layer chromatography (TLC) bio-autography assay and Ellman's method in a quantitative 96-well microplate assay. Targeted isolation of compounds was achieved with the aid of preparative-high perfomance liquid chromatography-mass spectrometry. The structures of the isolates were elucidated using nuclear magnetic resonance spectrocopy, and were docked into the active site of AChE to rationalise their biological activities. The most active species were found to be Amaryllis belladonna L (IC50 14.3 ± 2.6 μg/mL), Nerine huttoniae Schönland (IC50 45.3 ± 0.4 μg/mL) and Nerine undulata (L.) Herb. (IC50 52.8 ± 0.5 μg/mL), while TLC bio-autography indicated the presence of several active compounds in the methanol extracts. Four compounds, isolated from A. belladonna, were identified as belladine, undulatine, buphanidrine and acetylcaranine. Acetylcaranine and undulatine were previously isolated from A. belladonna, while belladine and buphanidrine were reported from other South African Amaryllidaceae species. Using Ellman's method, acetylcaranine was found to be the most active of the isolates towards AChE, with an IC50 of 11.7 ± 0.7 μM, comparable to that of galanthamine (IC50 = 6.19 ± 2.60 μM). Molecular docking successfully predicted the binding modes of ligands within receptor binding sites. Acetylcaranine was predicted by the docking workflow to have the highest activity, which corresponds to the in vitro results. Both qualitative and quantitative assays indicate that several South African Amaryllidaceae species are notable AChE inhibitors.
Collapse
|
10
|
Jahani R, Khoramjouy M, Nasiri A, Sojoodi Moghaddam M, Asgharzadeh Salteh Y, Faizi M. Neuro-Behavioral Profile and Toxicity of the Essential Oil of Dorema ammoniacum Gum as an Anti-seizure, Anti-nociceptive, and Hypnotic Agent with Memory-enhancing Properties in D-Galactose Induced Aging Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:110-121. [PMID: 33680015 PMCID: PMC7757986 DOI: 10.22037/ijpr.2020.113738.14458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we focused on the neuro-behavioral profile, toxicity, and possible mechanisms of action of Dorema ammoniacum gum essential oil (DAG-EO). For this purpose, passive avoidance and Y-maze tests were performed to evaluate the potential effect of DAG-EO in the attenuation of memory impairment induced by 49 days administration of D-galactose and acute injection of scopolamine. Anticonvulsant and anti-nociceptive activities of DAG-EO were evaluated in the pentylenetetrazole and maximal electroshock-induced models of seizure and acetic acid-induced writhing tests, respectively. To find the possible mechanism of action, flumazenil and naloxone were used. Furthermore, the possible side effects were determined in the open field, grip strength, and rotarod tests. Our findings supported that 7-day administration of DAG-EO (50 and 100 mg/kg) improves memory impairment induced following administration of D-galactose and scopolamine. It was also revealed that DAG-EO possesses a dose-dependent sedative-hypnotic (100 mg/kg), anticonvulsant (ED50 ≈ 170 mg/kg), and anti-nociceptive (ED50 ≈ 175 mg/kg) activities possibly mediated via directly and/or indirectly modulation of GABAA and opioid receptors. No side effect was observed except muscle relaxation which was less than that of diazepam. The output of this study confirms anti-seizure, anti-nociceptive, sedative-hypnotic, and memory-enhancing properties of DAG-EO by modulation of GABAA receptors.
Collapse
Affiliation(s)
- Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mona Khoramjouy
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Sojoodi Moghaddam
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Asgharzadeh Salteh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derivedStreptomycessp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 2018; 125:1370-1382. [DOI: 10.1111/jam.14043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- F. Almasi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| | - F. Mohammadipanah
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
| | - H.-R. Adhami
- Department of Pharmacognosy; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - J. Hamedi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| |
Collapse
|
12
|
Setayesh M, Zargaran A, Sadeghifar AR, Salehi M, Rezaeizadeh H. New candidates for treatment and management of carpal tunnel syndrome based on the Persian Canon of Medicine. Integr Med Res 2018; 7:126-135. [PMID: 29984174 PMCID: PMC6026351 DOI: 10.1016/j.imr.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
Carpal tunnel syndrome (CTS) is defined as a compressing median mononeuropathy. CTS is one of the major costly debilitating diseases of the hand. Although CTS is a relatively recent concept in current medicine, some evidences show that medieval physicians in Persian medicine (PM) such as Avicenna were familiar with it. The PM textbook written by Avicenna, the Canon of Medicine, defines the anatomy of carpal tunnel and median nerve, as well as mononeuropathy; it also offers suggestions for the prevention and treatment of carpal tunnel syndrome (called as Vaja al-asab and Khadar) in the chapter of nerve diseases. The book describes not only symptoms including pain, paresthesia, hypoesthesia, tingling, and numbness, but also its etiology such as nerve compression (entrapment neuropathy); nonphysical reasons such as disturbed balance among the four body humors; alteration in the nerve's temperament (Mizaj) that prevents the transmission of nerve impulses; and the others such as nutrition, mental condition, sleep, weather condition, body movements, and proper disposal of body waste. Furthermore, the book suggests a lifestyle modification method based on six factors and 10 prescriptions composed with 85 natural products that are not actively used for CTS treatment in modern times. The medicinal suggestions for CTS in the Canon of Medicine will be good candidates for discovering new treatments besides providing historical significance to the various insights considered 1000 years ago.
Collapse
Affiliation(s)
- Mohammad Setayesh
- Department of Persian Medicine, School of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Arman Zargaran
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of History of Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Sadeghifar
- Department of Orthopedic Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Salehi
- Traditional and Complementary Medicine Research Center (TCMRC), Department of Traditional Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ghasemi F, Tamadon H, Hosseinmardi N, Janahmadi M. Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:735-742. [PMID: 29881430 PMCID: PMC5985190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The current study is an attempt to elucidate the electrophysiological mechanism of the effect of Dorema ammoniacum gum on a cellular model of epilepsy, using intracellular recording method. The gum was applied either after or before pentylenetetrazole, as an epileptic drug, in order to explore the possible therapeutic and preventive effects of gum. Treatment with D. ammoniacum gum alone increased the neuronal excitability and when applied before or after treatment with PTZ not only did not prevent or change the electrophysiological changes induced by PTZ but also re-enhanced the induction of hyperexcitability and epileptiform activity through depolarizing membrane potential, increasing the firing frequency and decreasing the AHP amplitude. However, phenobarbital, as a standard anti-epileptic agent, almost reversed the effect of PTZ and preserved the normal firing properties of F1 neurons. The possible candidate mechanism of the effect of gum on neuronal excitability could be suppressive effects of gum on voltage and/or Ca2+ dependent K+ channels currents underlying AHP.
Collapse
Affiliation(s)
- Fatemeh Ghasemi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| | - Hanieh Tamadon
- Neuroscience Research Center, Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran. ,Neuroscience Research Center, Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.
| | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran. ,Neuroscience Research Center, Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
14
|
Motevalian M, Mehrzadi S, Ahadi S, Shojaii A. Anticonvulsant activity of Dorema ammoniacum gum: evidence for the involvement of benzodiazepines and opioid receptors. Res Pharm Sci 2017; 12:53-59. [PMID: 28255314 PMCID: PMC5333480 DOI: 10.4103/1735-5362.199047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study investigated the anticonvulsant activity and possible mechanism of action of an aqueous solution of Dorema ammoniacum gum (DAG) which has been used traditionally in the treatment of convulsions. In this study, the anticonvulsant activity of DAG was examined using the pentylentetrazole (PTZ) model in mice. Thirty male albino mice were divided randomly and equally to 5 groups, and pretreated with normal saline, diazepam, or various doses of DAG (500, 700, and 1000 mg/kg, i.p.), prior to the injection of PTZ (60 mg/kg, i.p.). The latency and duration of seizures were recorded 30 min after PTZ injection. Pretreatments with naloxone and flumazenil in different groups were studied to further clarify the mechanisms of the anticonvulsant action. Phytochemical screening and thin layer chromatography (TLC) fingerprinting of ammoniacum gum was also determined. DAG showed significant anticonvulsant activity at all doses used. The gum delayed both the onset and the duration of seizures induced by PTZ. Treatment with flumazenil before DAG (700 mg/kg) inhibited the effect of gum on seizure duration and latency to some extent and administration of naloxone before DAG also significantly inhibited changes in latency and duration of seizure produced by DAG. The percentage inhibition was greater with naloxone than with flumazenil. This study showed that DAG had significant anticonvulsant activity in PTZ-induced seizures, and GABAergic and opioid systems may be involved. More studies are needed to further investigate its detailed mechanism.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, I.R. Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, I.R. Iran
| | - Samira Ahadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, I.R. Iran
| | - Asie Shojaii
- Research Institute for Islamic and Complementary Medicine and School of Traditional Medicine, Iran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
15
|
Paradowska K, Polak B, Chomicki A, Ginalska G. Establishment of an effective TLC bioautographic method for the detection of Mycobacterium tuberculosis H37Ra phosphoglucose isomerase inhibition by phosphoenolpyruvate. J Enzyme Inhib Med Chem 2016; 31:1712-7. [DOI: 10.3109/14756366.2016.1151012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katarzyna Paradowska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland and
| | - Beata Polak
- Department of Physical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Chomicki
- Department of Physical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grażyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland and
| |
Collapse
|
16
|
Abedini A, Roumy V, Mahieux S, Gohari A, Farimani M, Rivière C, Samaillie J, Sahpaz S, Bailleul F, Neut C, Hennebelle T. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms. Lett Appl Microbiol 2014; 59:412-21. [DOI: 10.1111/lam.12294] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Affiliation(s)
- A. Abedini
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - V. Roumy
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - S. Mahieux
- Laboratoire de Bactériologie; INSERM U995; UFR Pharmacie; Université de Lille 2; Lille France
| | - A. Gohari
- Medicinal Plants Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - M.M. Farimani
- Department of Phytochemistry; Medicinal Plants and Drugs Research Institute; G. C., Evin; Shahid Beheshti University; Tehran Iran
| | - C. Rivière
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - J. Samaillie
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - S. Sahpaz
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - F. Bailleul
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| | - C. Neut
- Laboratoire de Bactériologie; INSERM U995; UFR Pharmacie; Université de Lille 2; Lille France
| | - T. Hennebelle
- Laboratoire Régional de Recherche en Agro-alimentaire et Biotechnologie; Institut Charles Viollette; Lille France
- Laboratoire de Pharmacognosie; EA 4481 GRIIOT; UFR Pharmacie; Université de Lille 2; Lille France
| |
Collapse
|