1
|
Serratì S, Zerlotin R, Manganelli M, Di Fonte R, Dicarlo M, Oranger A, Colaianni G, Porcelli L, Azzariti A, Guida S, Grano M, Colucci SC, Guida G. Irisin and Metastatic Melanoma: Selective Anti-Invasiveness Activity in BRAF Wild-Type Cells. Int J Mol Sci 2025; 26:652. [PMID: 39859367 PMCID: PMC11765811 DOI: 10.3390/ijms26020652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBLwt/wt, LND1wt/wt, Hmel1V600K/wt and M3V600E/V600E) capable of the oncogenic activation of BRAF. We treated MM cells with different concentrations of r-irisin (10 nM, 25 nM, 50 nM, 100 nM) for 24 h-48 h. An MTT assay highlighted that r-irisin did not affect the proliferation of MM cells. We subsequently treated MM cells with 10 nM r-irisin, corresponding to the dose exhibiting biological activity in vitro. Irisin reduced the invasive ability of only LND1wt/wt (p < 0.05), which highly expressed αv gene levels, but did not affect the invasion of BRAFmut cells. Gelatin zymography analysis showed a reduction in the enzymatic activity of MMP-2 and MMP-9 in BRAFwt/wt cells treated with 10 nM r-irisin. Moreover, gene expression analysis (qPCR) of MMP-2 and MMP-9 and of the fibrinolytic system (uPAR, uPA and PAI-1) highlighted a crucial role of 10 nM r-irisin treatment in the inhibition of pro-invasive systems in BRAFwt/wt. In conclusion, our results may suggest a possible differential role of irisin in melanoma cells.
Collapse
Affiliation(s)
- Simona Serratì
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (R.D.F.); (L.P.); (A.A.)
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.D.); (A.O.); (G.C.); (M.G.)
| | - Michele Manganelli
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy; (M.M.); (S.C.C.)
| | - Roberta Di Fonte
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (R.D.F.); (L.P.); (A.A.)
| | - Manuela Dicarlo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.D.); (A.O.); (G.C.); (M.G.)
| | - Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.D.); (A.O.); (G.C.); (M.G.)
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.D.); (A.O.); (G.C.); (M.G.)
| | - Letizia Porcelli
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (R.D.F.); (L.P.); (A.A.)
| | - Amalia Azzariti
- IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (S.S.); (R.D.F.); (L.P.); (A.A.)
| | - Stefania Guida
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- Dermatology Clinic, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.D.); (A.O.); (G.C.); (M.G.)
| | - Silvia Concetta Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy; (M.M.); (S.C.C.)
| | - Gabriella Guida
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy; (M.M.); (S.C.C.)
| |
Collapse
|
2
|
Lai TL, Park SY, Nguyen G, Pham PTM, Kang SM, Hong J, Lee JH, Im SS, Choi DH, Cho EH. Irisin Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis in Bile Duct Ligation Mice Model and Improves Mitochondrial Dysfunction. Endocrinol Metab (Seoul) 2024; 39:908-920. [PMID: 39497457 PMCID: PMC11695487 DOI: 10.3803/enm.2024.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGRUOUND Liver fibrosis is a common outcome of chronic liver disease and is primarily driven by hepatic stellate cell (HSC) activation. Irisin, a myokine released during physical exercise, is beneficial for metabolic disorders and mitochondrial dysfunction. This study aimed to explore the effects of irisin on liver fibrosis in HSCs, a bile duct ligation (BDL) mouse model, and the associated mitochondrial dysfunction. METHODS In vitro experiments utilized LX-2 cells, a human HSC line, stimulated with transforming growth factor-β1 (TGF-β1), a major regulator of HSC fibrosis, with or without irisin. Mitochondrial function was assessed using mitochondrial fission markers, transmission electron microscopy, mitochondrial membrane potential, and adenosine triphosphate (ATP) production. In vivo, liver fibrosis was induced in mice via BDL, followed by daily intraperitoneal injections of irisin (100 μg/kg/day) for 10 days. RESULTS In vitro, irisin mitigated HSC activation and reduced reactive oxygen species associated with the TGF-β1/Smad signaling pathway. Irisin restored TGF-β1-induced increases in fission markers (Fis1, p-DRP1) and reversed the decreased expression of TFAM and SIRT3. Additionally, irisin restored mitochondrial membrane potential and ATP production lowered by TGF-β1 treatment. In vivo, irisin ameliorated the elevated liver-to-body weight ratio induced by BDL and alleviated liver fibrosis, as evidenced by Masson's trichrome staining. Irisin also improved mitochondrial dysfunction induced by BDL surgery. CONCLUSION Irisin effectively attenuated HSC activation, ameliorated liver fibrosis in BDL mice, and improved associated mitochondrial dysfunction. These findings highlight the therapeutic potential of irisin for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Thuy Linh Lai
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - So Young Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Giang Nguyen
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Phuc Thi Minh Pham
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seon Mee Kang
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jeana Hong
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Dae-Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
3
|
Wenbo Z, Jianwei H, Hua L, Lei T, Guijuan C, Mengfei T. The potential of flavonoids in hepatic fibrosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155932. [PMID: 39146877 DOI: 10.1016/j.phymed.2024.155932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Hepatic fibrosis is a pathophysiological process of extracellular matrix abnormal deposition induced by multiple pathogenic factors. Currently, there is still a lack of effective and non-toxic drugs for treating fibrosis in clinic. Flavonoids are polyphenolic compounds synthesized in plants and modern pharmacological studies confirmed flavonoids exhibit potent hepatoprotective effect. PURPOSE Summarize literature to elaborate the mechanism of HF and evaluate the potential of flavonoids in HF, aiming to provide a new perspective for future research. METHODS The literatures about hepatic fibrosis and flavonoids are collected via a series of scientific search engines including Google Scholar, Elsevier, PubMed, CNKI, WanFang, SciFinder and Web of Science database. The key words are "flavonoids", "hepatic fibrosis", "pharmacokinetic", "toxicity", "pathogenesis" "traditional Chinese medicine" and "mechanism" as well as combination application. RESULTS Phytochemical and pharmacological studies revealed that about 86 natural flavonoids extracted from Chinese herbal medicines possess significantly anti-fibrosis effect and the mechanisms maybe through anti-inflammatory, antioxidant, inhibiting hepatic stellate cells activation and clearing activated hepatic stellate cells. CONCLUSIONS This review summarizes the flavonoids which are effective in HF and the mechanisms in vivo and in vitro. However, fewer studies are focused on the pharmacokinetics of flavonoids in HF model and most studies are limited to preclinical studies, therefore there is no reliable data from clinical trials for the development of new drugs. Further in-depth research related it can be conducted to improve the bioavailability of flavonoids and serve the development of new drugs.
Collapse
Affiliation(s)
- Zhu Wenbo
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China.
| | - Han Jianwei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Liu Hua
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Tang Lei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Chen Guijuan
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| | - Tian Mengfei
- Faculty of Chinese Medicine, Jiangsu College of Nursing, Huaian 223001, China
| |
Collapse
|
4
|
Chi C, Liang X, Cui T, Gao X, Liu R, Yin C. SKIL/SnoN attenuates TGF-β1/SMAD signaling-dependent collagen synthesis in hepatic fibrosis. BIOMOLECULES & BIOMEDICINE 2023; 23:1014-1025. [PMID: 37389959 PMCID: PMC10655871 DOI: 10.17305/bb.2023.9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The ski-related novel gene (SnoN), encoded by the SKIL gene, has been shown to negatively regulated transforming growth factor-β1 (TGF-β1) signaling pathway. However, the roles of SnoN in hepatic stellate cell (HSC) activation and hepatic fibrosis (HF) are still unclear. To evaluate the role of SnoN in HF, we combined bulk RNA sequencing analysis and single-cell RNA sequencing analysis to analyse patients with HF. The role of SKIL/SnoN was verified using liver samples from rat model transfected HSC-T6 and LX-2 cell lines. Immunohistochemistry, immunofluorescence, PCR, and western blotting techniques were used to demonstrate the expression of SnoN and its regulatory effects on TGF-β1 signaling in fibrotic liver tissues and cells. Furthermore, we constructed competitive endogenous RNA regulatory network and potential drug network associated with the SnoN gene. We identified SKIL gene as a differentially expressed gene in hepatic fibrosis. SnoN protein was found to be widely expressed in the cytoplasm of normal hepatic tissues, whereas it was almost absent in HF tissues. In the rat group subjected to bile duct ligation (BDL), SnoN protein expression decreased, while TGF-β1, collagen III, tissue inhibitor of metalloproteinase 1 (TIMP-1), and fibronectin levels increased. We observed the interaction of SnoN with p-SMAD2 and p-SMAD3 in the cytoplasm. Following SnoN overexpression, apoptosis of HSCs was promoted, and the expression of HF-associated proteins, including collagen I, collagen III, and TIMP-1, was reduced. Conversely, downregulation of SnoN inhibited HSC apoptosis, increased collagen III and TIMP-1 levels, and decreased matrix metalloproteinase 13 (MMP-13) expression. In conclusion, SnoN expression is downregulated in fibrotic livers, and could attenuate TGF-β1/SMADs signaling-dependent de-repression of collagen synthesis.
Collapse
Affiliation(s)
- Cheng Chi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- School of Nursing, Jining Medical University, Jining, Shandong, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, Shandong, China
- School of Nursing, Weifang Medical University, Weifang, Shandong, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiao Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
5
|
Zhang Y, Zhao L, Gao H, Zhai J, Song Y. Potential role of irisin in digestive system diseases. Biomed Pharmacother 2023; 166:115347. [PMID: 37625325 DOI: 10.1016/j.biopha.2023.115347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Digestive system diseases (DSD) are very complex conditions that severely threaten human health. Therefore, there is an urgent need to develop new pharmacological treatment strategies. Irisin, a myokine discovered in 2012, is produced by fibronectin type III domain-containing protein 5 (FNDC5), which is a transmembrane protein. Irisin is involved in promoting the browning of white adipose tissue, the regulation of energy metabolism, and the improvement of insulin resistance. Irisin is also an essential mediator of the inflammatory response, oxidative stress, and cell apoptosis. Recent studies have proved that irisin concentration is altered in DSD and exerts pivotal effects on the initiation, progression, and prognosis of these diseases through various mechanisms. Therefore, studying the expression and function of irisin may have great significance for the diagnosis and treatment of DSD. Here, we focus on irisin and explore the multiple molecular pathways targeted by irisin therapy. This review indicates that irisin can serve as a diagnostic marker or potential therapeutic agent for DSD. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Linxian Zhao
- Department of General Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun 130021, China
| | - Yanqing Song
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
7
|
Boga S, Yildirim AE, Ucbilek E, Koksal AR, Sisman ST, Durak I, Sen I, Dogu B, Serin E, Ucbilek AB, Yildirim MO, Erturk SM, Alkim H, Alkim C. The effect of sarcopenia and serum myokines on prognosis and survival in cirrhotic patients: a multicenter cross-sectional study. Eur J Gastroenterol Hepatol 2022; 34:1261-1268. [PMID: 36281901 DOI: 10.1097/meg.0000000000002461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Sarcopenia is one of the most significant contributors to morbidity in patients with chronic liver disease. Serum myokines are potential biomarkers for detecting early sarcopenia. We aimed to investigate the relationship between serum myokines and cirrhosis-related mortality in the early stages of the disease. METHODS In total, 262 patients and 50 healthy controls were enrolled in this study, which was designed as a multicenter cross-sectional study. At the beginning of the study, sarcopenia was defined by computed tomography scans using the third lumbar vertebra skeletal muscle index. Serum myostatin, irisin, and follistatin levels, nutritional status of the patients, and muscle strength as measured by the handgrip test were recorded. Cirrhosis-related mortality and overall survival were evaluated in the fourth year of the study as the second checkpoint of cross-sectional analysis. RESULTS A total of 145 (55.3%) patients were diagnosed with sarcopenia. Multivariate analysis revealed that low BMI, high levels of myostatin, and decreased irisin levels were independent predictors of sarcopenia. While serum irisin level was the most predictive parameter in terms of 4th-year cirrhosis-related mortality in the CHILD A group, serum myostatin levels were found more indicative in the CHILD BC group regardless of sarcopenia status ( P < 0.001). CONCLUSION Serum myostatin levels predict sarcopenia in all stages of cirrhosis. Serum irisin levels can also be used as a potential biomarker to predict both treatable sarcopenia and cirrhosis-related mortality in CHILD A patients.
Collapse
Affiliation(s)
- Salih Boga
- Department of Gastroenterology, Memorial Bahcelievler Hospital, Istanbul
| | | | - Enver Ucbilek
- Department of Gastroenterology, Mersin University School of Medicine, Mersin, Turkey
| | - Ali Riza Koksal
- Department of Gastroenterology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | - Erdinc Serin
- Biochemistry, University of Health Sciences Turkey, Sisli Hamidiye Etfal Teaching and Research Hospital, Istanbul
| | - Ayse Bolat Ucbilek
- Department of Radiology, University of Health Sciences Turkey, Adana Teaching and Research Hospital, Adana
| | | | - Sukru Mehmet Erturk
- Department of Radiology, Istanbul University, School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|