1
|
Singh S. Antioxidant nanozymes as next-generation therapeutics to free radical-mediated inflammatory diseases: A comprehensive review. Int J Biol Macromol 2024; 260:129374. [PMID: 38242389 DOI: 10.1016/j.ijbiomac.2024.129374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Recent developments in exploring the biological enzyme mimicking properties in nanozymes have opened a separate avenue, which provides a suitable alternative to the natural antioxidants and enzymes. Due to high and tunable catalytic activity, low cost of synthesis, easy surface modification, and good biocompatibility, nanozymes have garnered significant research interest globally. Several inorganic nanomaterials have been investigated to exhibit catalytic activities of some of the key natural enzymes, including superoxide dismutase (SOD), catalase, glutathione peroxidase, peroxidase, and oxidase, etc. These nanozymes are used for diverse biomedical applications including therapeutics, imaging, and biosensing in various cells/tissues and animal models. In particular, inflammation-related diseases are closely associated with reactive oxygen and reactive nitrogen species, and therefore effective antioxidants could be excellent therapeutics due to their free radical scavenging ability. Although biological enzymes and other artificial antioxidants could perform well in scavenging the reactive oxygen and nitrogen species, however, suffer from several drawbacks such as the requirement of strict physiological conditions for enzymatic activity, limited stability in the environment beyond their optimum pH and temperature, and high cost of synthesis, purification, and storage make then unattractive for broad-spectrum applications. Therefore, this review systematically and comprehensively presents the free radical-mediated evolution of various inflammatory diseases (inflammatory bowel disease, mammary gland fibrosis, and inflammation, acute injury of the liver and kidney, mammary fibrosis, and cerebral ischemic stroke reperfusion) and their mitigation by various antioxidant nanozymes in the biological system. The mechanism of free radical scavenging by antioxidant nanozymes under in vitro and in vivo experimental models and catalytic efficiency comparison with corresponding natural enzymes has also been presented.
Collapse
Affiliation(s)
- Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India.
| |
Collapse
|
2
|
ACE2 activator diminazene aceturate exerts renoprotective effects in gentamicin-induced acute renal injury in rats. Clin Sci (Lond) 2021; 134:3093-3106. [PMID: 33206153 DOI: 10.1042/cs20201022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Acute Kidney Injury (AKI) comprises a rapidly developed renal failure and is associated with high mortality rates. The Renin-Angiotensin System (RAS) plays a pivotal role in AKI, as the over-active RAS axis exerts major deleterious effects in disease progression. In this sense, the conversion of Angiotensin II (Ang II) into Angiotensin-(1-7) (Ang-(1-7)) by the Angiotensin-converting enzyme 2 (ACE2) is of utmost importance to prevent worse clinical outcomes. Previous studies reported the beneficial effects of oral diminazene aceturate (DIZE) administration, an ACE2 activator, in renal diseases models. In the present study, we aimed to evaluate the therapeutic effects of DIZE administration in experimental AKI induced by gentamicin (GM) in rats. Our findings showed that treatment with DIZE improved renal function and tissue damage by increasing Ang-(1-7) and ACE2 activity, and reducing TNF-α. These results corroborate with a raising potential of ACE2 activation as a strategy for treating AKI.
Collapse
|
3
|
Ma S, Wang DH. Knockout of Trpa1 Exacerbates Renal Ischemia-Reperfusion Injury With Classical Activation of Macrophages. Am J Hypertens 2021; 34:110-116. [PMID: 33005917 DOI: 10.1093/ajh/hpaa162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically activated macrophages contribute to the development of renal ischemia-reperfusion injury (IRI). This study aimed to investigate the role of transient receptor potential ankyrin 1 (Trpa1), a regulator of macrophage activation, in IRI-induced acute kidney injury (AKI) by using the Trpa1 gene knockout (Trpa1-/-) mouse model. METHODS Male 8-week-old Trpa1-/- mice and wild-type (WT) littermates were subjected to renal ischemia for 35 minutes by clamping bilateral renal pedicles under isoflurane anesthesia, and blood and tissue samples were collected 24 hours after reperfusion and analyzed with histological and molecular measurements. RESULTS Following IRI, Trpa1-/- mice developed more deteriorated biochemical and morphological signs of AKI when comparing with WT mice. More classically activated M1 macrophages were found in the kidneys of Trpa1-/- mice comparing with WT mice after IRI, while the counts of alternatively activated M2 macrophages in the kidney were similar between the 2 strains after IRI. Furthermore, significantly higher expression levels of proinflammatory markers including interleukin-1 beta and tumor necrosis factor alpha were detected in the kidney of Trpa1-/- mice compared with WT mice after IRI. The levels of TRPA1 protein in the kidney of WT mice were also decreased after IRI. CONCLUSIONS Our results show that ablation of Trpa1 exacerbates infiltration of classically activated macrophages, renal inflammation, and renal injury in mice after IRI. These findings suggest that activation of TRPA1 may protect against IRI-induced AKI via regulation of macrophage-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Balla J, Balla G, Zarjou A. Ferritin in Kidney and Vascular Related Diseases: Novel Roles for an Old Player. Pharmaceuticals (Basel) 2019; 12:E96. [PMID: 31234273 PMCID: PMC6630272 DOI: 10.3390/ph12020096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is at the forefront of a number of pivotal biological processes due to its ability to readily accept and donate electrons. However, this property may also catalyze the generation of free radicals with ensuing cellular and tissue toxicity. Accordingly, throughout evolution numerous pathways and proteins have evolved to minimize the potential hazardous effects of iron cations and yet allow for readily available iron cations in a wide variety of fundamental metabolic processes. One of the extensively studied proteins in the context of systemic and cellular iron metabolisms is ferritin. While clinicians utilize serum ferritin to monitor body iron stores and inflammation, it is important to note that the vast majority of ferritin is located intracellularly. Intracellular ferritin is made of two different subunits (heavy and light chain) and plays an imperative role as a safe iron depot. In the past couple of decades our understanding of ferritin biology has remarkably improved. Additionally, a significant body of evidence has emerged describing the significance of the kidney in iron trafficking and homeostasis. Here, we briefly discuss some of the most important findings that relate to the role of iron and ferritin heavy chain in the context of kidney-related diseases and, in particular, vascular calcification, which is a frequent complication of chronic kidney disease.
Collapse
Affiliation(s)
- József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary.
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
da Cunha NV, Lopes FNC, Panis C, Cecchini R, Pinge-Filho P, Martins-Pinge MC. iNOS inhibition improves autonomic dysfunction and oxidative status in hypertensive obese rats. Clin Exp Hypertens 2017; 39:50-57. [DOI: 10.1080/10641963.2016.1210628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Carolina Panis
- Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Rubens Cecchini
- Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Phileno Pinge-Filho
- Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
6
|
Fouad AA, Qutub HO, Al-Melhim WN. Nephroprotection of punicalagin in rat model of endotoxemic acute kidney injury. Toxicol Mech Methods 2016; 26:538-543. [PMID: 27464552 DOI: 10.1080/15376516.2016.1211207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential nephroprotection of punicalagin (PNG) against lipopolysaccharide (LPS)-induced acute kidney injury in rats was investigated. Rats received a single i.v. dose of LPS (5 mg/kg), and treated with PNG (50 mg/kg, i.p.), 1 h before, and 1 h following LPS administration. LPS caused significant increases of serum creatinine and neutrophil gelatinase-associated lipocalin. LPS also resulted in significant increases in interleukin-18, tumor necrosis factor-α, interleukin-6, malondialdehyde, nitric oxide, Bax/Bcl-2 ratio and myeloperoxidase, inducible nitric oxide synthase, caspases 3, 8 and 9 activities, and a significant decrease in total antioxidant capacity in kidney tissues. PNG significantly ameliorated the alterations in the measured parameters. Additionally, PNG attenuated the histopathological injury and reduced kidney injury molecule-1 expression in kidneys of rats that received LPS. It was concluded that PNG ameliorated endotoxemic acute kidney injury in rats by counteracting inflammation, oxidative/nitrative stress and apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- a Department of Biomedical Sciences, Pharmacology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Hatem O Qutub
- b Department of Internal Medicine, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| | - Walid N Al-Melhim
- c Department of Biomedical Sciences, Histopathology Division, College of Medicine , King Faisal University , Al-Ahsa , Saudi Arabia
| |
Collapse
|
7
|
Narayan P, Duan B, Jiang K, Li J, Paka L, Yamin MA, Friedman SL, Weir MR, Goldberg ID. Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol 2016; 311:F352-61. [PMID: 27252491 DOI: 10.1152/ajprenal.00455.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
Ischemia-reperfusion-mediated acute kidney injury can necessitate renal replacement therapy and is a major cause of morbidity and mortality. We have identified BB3, a small molecule, which when first administered at 24 h after renal ischemia in rats, improved survival, augmented urine output, and reduced the increase in serum creatinine and blood urea nitrogen. Compared with control kidneys, the kidneys of BB3-treated animals exhibited reduced levels of kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and reduced tubular apoptosis and acute tubular necrosis but enhanced tubular regeneration. Consistent with its hepatocyte growth factor-like mode of action, BB3 treatment promoted phosphorylation of renal cMet and Akt and upregulated renal expression of the survival protein Bcl-2. These data suggest that the kidney is amenable to pharmacotherapy even 24 h after ischemia-reperfusion and that activation of the hepatocyte growth factor signaling pathway with the small molecule BB3 confers interventional benefits late into ischemia-reperfusion injury. These data formed, in part, the basis for the use of BB3 in a clinical trial in kidney recipients presenting with delayed graft function.
Collapse
Affiliation(s)
- Prakash Narayan
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York;
| | - Bin Duan
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Kai Jiang
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Jingsong Li
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Latha Paka
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Michael A Yamin
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Itzhak D Goldberg
- Department of Preclinical Research, Angion Biomedica Corporation, New York, New York
| |
Collapse
|
8
|
Tavafi M. Antioxidants against contrast media induced nephrotoxicity. J Renal Inj Prev 2014; 3:55-6. [PMID: 25340169 PMCID: PMC4206050 DOI: 10.12861/jrip.2014.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/25/2013] [Indexed: 12/02/2022] Open
Affiliation(s)
- Majid Tavafi
- Department of anatomy, Faculty of Medicine, Lorestan University of Medical sciences, Khoram Abad, Iran
| |
Collapse
|
9
|
Inda-Filho AJ, Caixeta A, Manggini M, Schor N. Do intravenous N-acetylcysteine and sodium bicarbonate prevent high osmolal contrast-induced acute kidney injury? A randomized controlled trial. PLoS One 2014; 9:e107602. [PMID: 25254489 PMCID: PMC4177831 DOI: 10.1371/journal.pone.0107602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/19/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND N-acetylcysteine (NAC) or sodium bicarbonate (NaHCO3), singly or combined, inconsistently prevent patients exposed to radiographic contrast media from developing contrast-induced acute kidney injury (CI-AKI). OBJECTIVE We asked whether intravenous isotonic saline and either NaHCO3 in 5% dextrose or else a high dose of NAC in 5% dextrose prevent CI-AKI in outpatients exposed to high-osmolal iodinated contrast medium more than does saline alone. METHODS This completed prospective, parallel, superiority, open-label, controlled, computer-randomized, single-center, Brazilian trial (NCT01612013) hydrated 500 adult outpatients (214 at high risk of developing CI-AKI) exposed to ioxitalamate during elective coronary angiography and ventriculography. From 1 hour before through 6 hours after exposure, 126 patients (group 1) received a high dose of NAC and saline, 125 (group 2) received NaHCO3 and saline, 124 (group 3) received both treatments, and 125 (group 4) received only saline. RESULTS Groups were similar with respect to age, gender, weight, pre-existing renal dysfunction, hypertension, medication, and baseline serum creatinine and serum cystatin C, but diabetes mellitus was significantly less prevalent in group 1. CI-AKI incidence 72 hours after exposure to contrast medium was 51.4% (257/500), measured as serum creatinine > (baseline+0.3 mg/dL) and/or serum cystatin C > (1.1 · baseline), and 7.6% (38/500), measured as both serum creatinine and serum cystatin C > (baseline+0.3 mg/dL) or > (1.25 · baseline). CI-AKI incidence measured less sensitively was similar among groups. Measured more sensitively, incidence in group 1 was significantly (p<0.05) lower than in groups 2 and 3 but not group 4; adjustment for confounding by infused volume equalized incidence in groups 1 and 3. CONCLUSION We found no evidence that intravenous isotonic saline and either NaHCO3 or else a high dose of NAC prevent CI-AKI in outpatients exposed to high osmolal iodinated contrast medium more than does saline alone. TRIAL REGISTRATION ClinicalTrials.gov NCT01612013.
Collapse
Affiliation(s)
- Antonio Jose Inda-Filho
- Divisão de Nefrologia, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, DF, Brazil
- * E-mail:
| | - Adriano Caixeta
- Cardiologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcia Manggini
- Cardiologia, Hospital Universitário de Brasília, Universidade de Brasília, Brasília, DF, Brazil
| | - Nestor Schor
- Pós Graduação em Nefrologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Jorgensen AL. Contrast-induced nephropathy: pathophysiology and preventive strategies. Crit Care Nurse 2013; 33:37-46. [PMID: 23377156 DOI: 10.4037/ccn2013680] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Contrast-induced nephropathy is the third most common cause of hospital-acquired renal failure, after decreased renal perfusion and nephrotoxic medications. Identification of patients at risk and implementation of preventive strategies can decrease the incidence of this nephropathy. Prevention strategies focus on counteracting vasoconstriction, enhancing blood flow through the nephron, and providing protection against injury by oxygen free radicals. Knowledge of the adverse effects associated with infusion of contrast media, identification of patients at risk for contrast-induced nephropathy, and application of evidence-based prevention strategies allow nurses to assist in the prevention of contrast-induced nephropathy.
Collapse
Affiliation(s)
- Ann L Jorgensen
- Advocate South Suburban Hospital, 17800 Kedzie Ave, Hazel Crest, IL 60429, USA.
| |
Collapse
|
11
|
Parajuli N, MacMillan-Crow LA. Role of reduced manganese superoxide dismutase in ischemia-reperfusion injury: a possible trigger for autophagy and mitochondrial biogenesis? Am J Physiol Renal Physiol 2012. [PMID: 23195678 DOI: 10.1152/ajprenal.00435.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Excessive generation of superoxide and mitochondrial dysfunction has been described as being important events during ischemia-reperfusion (I/R) injury. Our laboratory has demonstrated that manganese superoxide dismutase (MnSOD), a major mitochondrial antioxidant that eliminates superoxide, is inactivated during renal transplantation and renal I/R and precedes development of renal failure. We hypothesized that MnSOD knockdown in the kidney augments renal damage during renal I/R. Using newly characterized kidney-specific MnSOD knockout (KO) mice the extent of renal damage and oxidant production after I/R was evaluated. These KO mice (without I/R) exhibited low expression and activity of MnSOD in the distal nephrons, had altered renal morphology, increased oxidant production, but surprisingly showed no alteration in renal function. After I/R the MnSOD KO mice showed similar levels of injury to the distal nephrons when compared with wild-type mice. Moreover, renal function, MnSOD activity, and tubular cell death were not significantly altered between the two genotypes after I/R. Interestingly, MnSOD KO alone increased autophagosome formation, mitochondrial biogenesis, and DNA replication/repair within the distal nephrons. These findings suggest that the chronic oxidative stress as a result of MnSOD knockdown induced multiple coordinated cell survival signals including autophagy and mitochondrial biogenesis, which protected the kidney against the acute oxidative stress following I/R.
Collapse
Affiliation(s)
- Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
12
|
Yayan J. Coronary heart disease is not significantly linked to acute kidney injury identified using Acute Kidney Injury Group criteria. Int J Gen Med 2012; 5:831-8. [PMID: 23077411 PMCID: PMC3474171 DOI: 10.2147/ijgm.s32124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with unstable angina or myocardial infarction are at risk of acute kidney injury, which may be aggravated by the iodine-containing contrast agent used during coronary angiography; however, the relationship between these two conditions remains unclear. Objective The current study investigated the relationship between acute kidney injury and coronary heart disease prior to coronary angiography. Methods All patients were evaluated after undergoing coronary angiography in the cardiac catheterization laboratory of the Vinzentius Hospital in Landau, Germany, in 2011. The study group included patients with both acute coronary heart disease and acute kidney injury (as defined according to the classification of the Acute Kidney Injury Group); the control group included patients without acute coronary heart disease. Serum creatinine profiles were evaluated in all patients, as were a variety of demographic and health characteristics. Results Of the 303 patients examined, 201 (66.34%) had coronary artery disease. Of these, 38 (18.91%) also had both acute kidney injury and acute coronary heart disease prior to and after coronary angiography, and of which in turn 34 (16.91%) had both acute kidney injury and acute coronary heart disease only prior to the coronary angiography. However, the occurrence of acute kidney injury was not significantly related to the presence of coronary heart disease (P = 0.95, Chi-square test). Conclusion The results of this study indicate that acute kidney injury is not linked to acute coronary heart disease. However, physicians should be aware that many coronary heart patients may develop kidney injury while hospitalized for angiography.
Collapse
Affiliation(s)
- Josef Yayan
- Department of Internal Medicine, Vinzentius Hospital, Landau, Germany
| |
Collapse
|
13
|
Cui WY, Tian AY, Bai T. Protective effects of propofol on endotoxemia-induced acute kidney injury in rats. Clin Exp Pharmacol Physiol 2012; 38:747-54. [PMID: 21824173 DOI: 10.1111/j.1440-1681.2011.05584.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. Animal studies suggest that propofol protects against endotoxaemia-induced lung and kidney injury. Upregulation of aquaporin expression in lung tissue mediates these effects, but the mechanism of action in the kidney is unclear. The present study examined the protective effects of propofol on endotoxaemia-induced acute kidney injury in rats. 2. A rat model of endotoxaemia was established using lipopolysaccharide (LPS). We determined the effects of 10% propofol administration 1 h before, during and 1 h after LPS-induced endotoxaemia on expression of aquaporin (AQP)-2, tumour necrosis factor (TNF)-α, intercellular adhesion molecule (ICAM)-1, caspase 3, Bcl-2 and Bax using reverse transcription-polymerase chain reaction, western blotting and immunocytochemistry. Renal morphology, superstructure, apoptosis and function were also assessed. 3. Normal renal tubular structure was seen in the propofol pretreated group, but LPS treatment resulted in changes to renal tissue morphology. Propofol treatment improved renal function in LPS-treated rats. Pretreatment with propofol 1 h before LPS normalized urine and serum osmolality, serum creatinine and blood urea nitrogen to control levels. Lipopolysaccharide downregulated expression of AQP-2 and downregulated the expression of ICAM-1 and TNF-α. These effects were reversed by propofol treatment. Lipopolysaccharide reduced the Bcl2 : Bax ratio and induced renal cell apoptosis and these effects were reduced by propofol treatment. Overall, propofol pretreatment had greater effects than concurrent treatment or propofol administration after LPS induction of endotoxaemia. 4. In conclusion, propofol pretreatment protected renal function in a rat model of endotoxaemia. Further studies are necessary to confirm this effect in other experimental models and in humans.
Collapse
Affiliation(s)
- Wen-Yao Cui
- Department of Anaesthesiology, The First University Hospital of China Medical University, Shenyang, China
| | | | | |
Collapse
|
14
|
Zürbig P, Dihazi H, Metzger J, Thongboonkerd V, Vlahou A. Urine proteomics in kidney and urogenital diseases: Moving towards clinical applications. Proteomics Clin Appl 2011; 5:256-68. [PMID: 21591267 DOI: 10.1002/prca.201000133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 12/14/2022]
Abstract
To date, multiple biomarker discovery studies in urine have been conducted. Nevertheless, the rate of progression of these biomarkers to qualification and even more clinical application is extremely low. The scope of this article is to provide an overview of main clinically relevant proteomic findings from urine focusing on kidney diseases, bladder and prostate cancers. In addition, approaches for promoting the use of urine in clinical proteomics including potential means to facilitate the validation of existing promising findings (biomarker candidates identified from previous studies) and to increase the chances for success for the identification of new biomarkers are discussed.
Collapse
|