1
|
Kim SY, Na MJ, Yoon S, Shin E, Ha JW, Jeon S, Nam SW. The roles and mechanisms of coding and noncoding RNA variations in cancer. Exp Mol Med 2024; 56:1909-1920. [PMID: 39218979 PMCID: PMC11447202 DOI: 10.1038/s12276-024-01307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024] Open
Abstract
Functional variations in coding and noncoding RNAs are crucial in tumorigenesis, with cancer-specific alterations often resulting from chemical modifications and posttranscriptional processes mediated by enzymes. These RNA variations have been linked to tumor cell proliferation, growth, metastasis, and drug resistance and are valuable for identifying diagnostic or prognostic cancer biomarkers. The diversity of posttranscriptional RNA modifications, such as splicing, polyadenylation, methylation, and editing, is particularly significant due to their prevalence and impact on cancer progression. Additionally, other modifications, including RNA acetylation, circularization, miRNA isomerization, and pseudouridination, are recognized as key contributors to cancer development. Understanding the mechanisms underlying these RNA modifications in cancer can enhance our knowledge of cancer biology and facilitate the development of innovative therapeutic strategies. Targeting these RNA modifications and their regulatory enzymes may pave the way for novel RNA-based therapies, enabling tailored interventions for specific cancer subtypes. This review provides a comprehensive overview of the roles and mechanisms of various coding and noncoding RNA modifications in cancer progression and highlights recent advancements in RNA-based therapeutic applications.
Collapse
Affiliation(s)
- Sang Yean Kim
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Sungpil Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- NEORNAT Inc., Seoul, Republic of Korea
| | - Eunbi Shin
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Jin Woong Ha
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Soyoung Jeon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
- NEORNAT Inc., Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
2
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
3
|
Aquino A, Bianchi N, Terrazzan A, Franzese O. Protein Kinase C at the Crossroad of Mutations, Cancer, Targeted Therapy and Immune Response. BIOLOGY 2023; 12:1047. [PMID: 37626933 PMCID: PMC10451643 DOI: 10.3390/biology12081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
The frequent PKC dysregulations observed in many tumors have made these enzymes natural targets for anticancer applications. Nevertheless, this considerable interest in the development of PKC modulators has not led to the expected therapeutic benefits, likely due to the complex biological activities regulated by PKC isoenzymes, often playing ambiguous and protective functions, further driven by the occurrence of mutations. The structure, regulation and functions of PKCs have been extensively covered in other publications. Herein, we focused on PKC alterations mostly associated with complete functional loss. We also addressed the modest yet encouraging results obtained targeting PKC in selected malignancies and the more frequent negative clinical outcomes. The reported observations advocate the need for more selective molecules and a better understanding of the involved pathways. Furthermore, we underlined the most relevant immune mechanisms controlled by PKC isoforms potentially impacting the immune checkpoint inhibitor blockade-mediated immune recovery. We believe that a comprehensive examination of the molecular features of the tumor microenvironment might improve clinical outcomes by tailoring PKC modulation. This approach can be further supported by the identification of potential response biomarkers, which may indicate patients who may benefit from the manipulation of distinctive PKC isoforms.
Collapse
Affiliation(s)
- Angelo Aquino
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.T.)
- Laboratory for Advanced Therapy Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
4
|
Targeting Protein Kinase C for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14051104. [PMID: 35267413 PMCID: PMC8909172 DOI: 10.3390/cancers14051104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The protein kinase C (PKC) family belongs to serine-threonine kinases and consists of several subtypes. Increasing evidence suggests that PKCs are critical players in carcinogenesis. Interestingly, PKCs exert both promotive and suppressive effects on tumor cell growth and metastasis, which have attracted immense attention. Herein, we systematically review the current advances in the structure, regulation and biological functions of PKCs, especially the relationship of PKCs with anti-cancer therapy-induced cell death, including the current knowledge of PKCs function in tumor metabolism and microenvironment. Moreover, we discuss the potential role of PKCs as a target for therapeutic intervention in cancer from basic research and clinical trials. Abstract Protein kinase C (PKC) isoforms, a group of serine-threonine kinases, are important regulators in carcinogenesis. Numerous studies have demonstrated that PKC isoforms exert both positive and negative effects on cancer cell demise. In this review, we systematically summarize the current findings on the architecture, activity regulation and biological functions of PKCs, especially their relationship with anti-cancer therapy-induced cell death. Additionally, we elaborate on current knowledge of the effects of PKCs on tumor metabolism and microenvironment, which have gained increasing attention in oncology-related areas. Furthermore, we underscore the basic experimental and clinical implications of PKCs as a target for cancer therapy to evaluate their therapeutic benefits and potential applications.
Collapse
|
5
|
Activators and Inhibitors of Protein Kinase C (PKC): Their Applications in Clinical Trials. Pharmaceutics 2021; 13:pharmaceutics13111748. [PMID: 34834162 PMCID: PMC8621927 DOI: 10.3390/pharmaceutics13111748] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinase, is classed into three subfamilies based on their structural and activation characteristics: conventional or classic PKC isozymes (cPKCs; α, βI, βII, and γ), novel or non-classic PKC isozymes (nPKCs; δ, ε, η, and θ), and atypical PKC isozymes (aPKCs; ζ, ι, and λ). PKC inhibitors and activators are used to understand PKC-mediated intracellular signaling pathways and for the diagnosis and treatment of various PKC-associated diseases, such as cancers, neurological diseases, cardiovascular diseases, and infections. Many clinical trials of PKC inhibitors in cancers showed no significant clinical benefits, meaning that there is a limitation to design a cancer therapeutic strategy targeting PKC alone. This review will focus on the activators and inhibitors of PKC and their applications in clinical trials.
Collapse
|
6
|
Uprety D, Adjei AA. KRAS: From undruggable to a druggable Cancer Target. Cancer Treat Rev 2020; 89:102070. [DOI: 10.1016/j.ctrv.2020.102070] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
|
7
|
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2017; 48:36-52. [PMID: 28571764 DOI: 10.1016/j.semcancer.2017.04.012] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/22/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its potential usage as a therapeutic target.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.
| |
Collapse
|
8
|
Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Cancer Treat Rev 2016; 50:35-47. [PMID: 27612280 DOI: 10.1016/j.ctrv.2016.08.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
Recent advances in RNA delivery and target selection provide unprecedented opportunities for cancer treatment, especially for cancers that are particularly hard to treat with existing drugs. Small interfering RNAs, microRNAs, and antisense oligonucleotides are the most widely used strategies for silencing gene expression. In this review, we summarize how these approaches were used to develop drugs targeting RNA in human cells. Then, we review the current state of clinical trials of these agents for different types of cancer and outcomes from published data. Finally, we discuss lessons learned from completed studies and future directions for this class of drugs.
Collapse
Affiliation(s)
- Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6235641. [PMID: 27418953 PMCID: PMC4932173 DOI: 10.1155/2016/6235641] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.
Collapse
|
10
|
Wang J, Lon HK, Lee SL, Burckart GJ, Pisetsky DS. Oligonucleotide-Based Drug Development: Considerations for Clinical Pharmacology and Immunogenicity. Ther Innov Regul Sci 2015; 49:861-868. [PMID: 30222372 DOI: 10.1177/2168479015592195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The field of oligonucleotide (OGN)-based therapeutics has been growing dramatically in the past decade, providing innovative platforms to develop agents for the treatment of a wide variety of clinical conditions. OGN agents have unique physicochemical properties and pharmacokinetic/pharmacodynamic characteristics. This review considers findings from the literature and information on new molecular entities submitted to the US Food and Drug Administration as OGN-based therapeutics. In addition, the article discusses several challenging issues from the perspective of clinical pharmacology, emphasizing the potential of immunogenicity, the effect of renal impairment on OGN exposure, drug-drug interactions, and the utility of pharmacokinetic/pharmacodynamic modeling. The field of OGN-based therapeutics is in evolution and will benefit from further studies as well as clinical experience to formulate guidelines and promote the development of this class of agents.
Collapse
Affiliation(s)
- Jian Wang
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hoi-Kei Lon
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA.,2 Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Shwu-Luan Lee
- 3 Office of Hematology and Oncology Products, Office of New Drugs, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- 1 Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, MD, USA
| | - David S Pisetsky
- 4 Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Martin-Liberal J, Cameron AJ, Claus J, Judson IR, Parker PJ, Linch M. Targeting protein kinase C in sarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:547-59. [PMID: 25453364 DOI: 10.1016/j.bbcan.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/19/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine tyrosine kinases that regulate many cellular processes including division, proliferation, survival, anoikis and polarity. PKC is abundant in many human cancers and aberrant PKC signalling has been demonstrated in cancer models. On this basis, PKC has become an attractive target for small molecule inhibition within oncology drug development programmes. Sarcoma is a heterogeneous group of mesenchymal malignancies. Due to their relative insensitivity to conventional chemotherapies and the increasing recognition of the driving molecular events of sarcomagenesis, sarcoma provides an excellent platform to test novel therapeutics. In this review we provide a structure-function overview of the PKC family, the rationale for targeting these kinases in sarcoma and the state of play with regard to PKC inhibition in the clinic.
Collapse
Affiliation(s)
- J Martin-Liberal
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - A J Cameron
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Claus
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - I R Judson
- Sarcoma Unit, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - P J Parker
- Protein Phosphorylation Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK; Division of Cancer Studies, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - M Linch
- Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
12
|
Abstract
Protein kinase C (PKC) has been a tantalizing target for drug discovery ever since it was first identified as the receptor for the tumour promoter phorbol ester in 1982. Although initial therapeutic efforts focused on cancer, additional indications--including diabetic complications, heart failure, myocardial infarction, pain and bipolar disorder--were targeted as researchers developed a better understanding of the roles of eight conventional and novel PKC isozymes in health and disease. Unfortunately, both academic and pharmaceutical efforts have yet to result in the approval of a single new drug that specifically targets PKC. Why does PKC remain an elusive drug target? This Review provides a short account of some of the efforts, challenges and opportunities in developing PKC modulators to address unmet clinical needs.
Collapse
|
13
|
Talbot DC, Ranson M, Davies J, Lahn M, Callies S, André V, Kadam S, Burgess M, Slapak C, Olsen AL, McHugh PJ, de Bono JS, Matthews J, Saleem A, Price P. Tumor survivin is downregulated by the antisense oligonucleotide LY2181308: a proof-of-concept, first-in-human dose study. Clin Cancer Res 2010; 16:6150-8. [PMID: 21041181 DOI: 10.1158/1078-0432.ccr-10-1932] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Enhanced tumor cell survival through expression of inhibitors of apoptosis (IAP) is a hallmark of cancer. Survivin, an IAP absent from most normal tissues, is overexpressed in many malignancies and associated with a poorer prognosis. We report the first-in-human dose study of LY2181308, a second-generation antisense oligonucleotide (ASO) directed against survivin mRNA. PATIENTS AND METHODS A dose-escalation study evaluating the safety, pharmacokinetics, and pharmacodynamics of LY2181308 administered intravenously for 3 hours as a loading dose on 3 consecutive days and followed by weekly maintenance doses. Patients were eligible after signing informed consent, had exhausted approved anticancer therapies and agreed to undergo pre- and posttreatment tumor biopsies to evaluate reduction of survivin protein and gene expression. RESULTS A total of 40 patients were treated with LY2181308 at doses of 100 to 1,000 mg. Twenty-six patients were evaluated at the recommended phase 2 dose of 750 mg, at which level serial tumor sampling and [(11)C]LY2183108 PET (positron emission tomography) imaging demonstrated that ASO accumulated within tumor tissue, reduced survivin gene and protein expression by 20% and restored apoptotic signaling in tumor cells in vivo. Pharmacokinetics were consistent with preclinical modeling, exhibiting rapid tissue distribution, and terminal half-life of 31 days. CONCLUSIONS The tumor-specific, molecularly targeted effects demonstrated by this ASO in man underpin confirmatory studies evaluating its therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Denis C Talbot
- Department of Medical Oncology, University of Oxford, Oxford Radcliffe Hospitals NHS Trust, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Management Strategies for Patients with KRAS Mutations. CURRENT COLORECTAL CANCER REPORTS 2010. [DOI: 10.1007/s11888-010-0066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death in the United States. Research has led to an explosion of knowledge into the molecular basis of CRC in the past decades. Numerous receptors and intracellular proteins have been identified and implicated in the growth and progression of metastatic CRC, thus creating novel targets for drug development. Many agents are under development and have begun to enter early and even later-stage clinical trials. Results of these agents have demonstrated some encouraging activity but in a small number of patients. Research into predictive biomarkers aims to select the patients who may benefit from these novel agents. This review will address several of these promising new agents, their potential relevance to CRC, results from early clinical studies, and their incorporation into future and ongoing CRC clinical trials. Clearly, there is an urgent need for new agents in this disease, but as we learned from the experience with epidermal growth factor receptor-targeted antibodies, patient selection will be increasingly be required for individualized therapy to become a reality in CRC.
Collapse
|
16
|
Protein kinase Calpha: disease regulator and therapeutic target. Trends Pharmacol Sci 2009; 31:8-14. [PMID: 19969380 PMCID: PMC2809215 DOI: 10.1016/j.tips.2009.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 12/28/2022]
Abstract
Protein kinase Cα (PKCα) is a member of the AGC (which includes PKD, PKG and PKC) family of serine/threonine protein kinases that is widely expressed in mammalian tissues. It is closely related in structure, function and regulation to other members of the protein kinase C family, but has specific functions within the tissues in which it is expressed. There is substantial recent evidence, from gene knockout studies in particular, that PKCα activity regulates cardiac contractility, atherogenesis, cancer and arterial thrombosis. Selective targeting of PKCα therefore has potential therapeutic value in a wide variety of disease states, although will be technically complicated by the ubiquitous expression and multiple functions of the molecule.
Collapse
|
17
|
Zhang C, Newsome JT, Mewani R, Pei J, Gokhale PC, Kasid UN. Systemic delivery and pre-clinical evaluation of nanoparticles containing antisense oligonucleotides and siRNAs. Methods Mol Biol 2009; 480:65-83. [PMID: 19085118 DOI: 10.1007/978-1-59745-429-2_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By virtue of their potential to selectively silence oncogenic molecules in cancer cells, antisense oligonucleotides (ASO) and small interfering RNAs (siRNAs) are powerful tools for development of tailored anti-cancer drugs. The clinical benefit of ASO/siRNA therapeutic is, however, hampered due to poor pharmacokinetics and biodistribution, and suboptimal suppression of the target in tumor tissues. Raf-1 protein serine/threonine kinase is a druggable signaling molecule in cancer therapy. Our laboratory has developed cationic liposomes for systemic delivery of raf ASO (LErafAON) and raf siRNA (LErafsiRNA) to human tumor xenografts grown in athymic mice. LErafAON is also the first ASO containing liposomal drug tested in humans. In this article, we primarily focus on a modified formulation of systemically delivered cationic liposomes containing raf antisense oligonucleotide (md-LErafAON). The cationic liposomes were prepared using dimyristoyl 1,2-diacyl-3-trimethylammonium-propane (DMTAP), phosphatidylcholine (PC), and cholesterol (CHOL). The toxicology, pharmacokinetics, biodistribution, target selectivity, and anti-tumor efficacy studies of md-LErafAON were conducted in mice. We demonstrate that md-LErafAON is the next generation of systemically delivered and well-tolerated antisense therapeutic suitable for clinical evaluation.
Collapse
Affiliation(s)
- Chuanbo Zhang
- Departments of Radiation Medicine and Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington D.C. 20057, USA
| | | | | | | | | | | |
Collapse
|
18
|
Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:275-95. [PMID: 19787090 PMCID: PMC2733095 DOI: 10.4137/grsb.s418] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Moizza Mansoor
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
19
|
El-Maraghi RH, Eisenhauer EA. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol 2008; 26:1346-54. [PMID: 18285606 DOI: 10.1200/jco.2007.13.5913] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Because the appropriate design and end points for phase II evaluation of targeted anticancer agents are unclear, we undertook a review of recent reports of phase II trials of targeted agents to determine the types of designs used, the planned end points, the outcomes, and the relationship between trial outcomes and regulatory approval. METHODS We retrieved reports of single-agent phase II trials in six solid tumors for 19 targeted drugs. For each, we abstracted data regarding planned design and actual results. Response rates were examined for any relationship to eventual success of the agents, as determined by US Food and Drug Administration approval for at least one indication. RESULTS Eighty-nine trials were identified. Objective response was the primary or coprimary end point in the majority of trials (61 of 89 trials). Fourteen reports were of randomized studies generally evaluating different doses of agents, not as controlled experiments. Enrichment for target expression was uncommon. Objective responses were seen in 38 trials; in 19 trials, response rates were more than 10%, and in eight, they were more than 20%. Agents with high response rates tended to have high nonprogression rates; renal cell carcinoma was the exception to this. Higher overall response rates were predictive of regulatory approval in the tumor types reviewed (P = .005). CONCLUSION In practice, phase II design for targeted agents is similar to that for cytotoxics. Objective response seems to be a useful end point for screening new targeted agents because, in our review, its observation predicted for eventual success. Improvements in design are recommended, as is more frequent inclusion of biological questions as part of phase II trials.
Collapse
|
20
|
Low J, Dowless M, Blosser W, Vincent T, Davis S, Hodson J, Koller E, Marcusson E, Blanchard K, Stancato L. High-content imaging analysis of the knockdown effects of validated siRNAs and antisense oligonucleotides. ACTA ACUST UNITED AC 2007; 12:775-88. [PMID: 17517903 DOI: 10.1177/1087057107302675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-content imaging (HCI) provides researchers with a powerful tool for understanding cellular processes. Although phenotypic analysis generated through HCI is a potent technique to determine the overall cellular effects of a given treatment, it frequently produces complex data sets requiring extensive interpretation. The authors developed statistical analyses to decrease the time spent to determine the outcome of each HCI assay and to better understand complex phenotypic changes. To test these tools, the authors performed a comparison experiment between 2 types of oligonucleotide-mediated gene silencing (OMGS), antisense oligonucleotides (ASOs), and short, double-stranded RNAs (siRNAs). Although similar in chemical structure, these 2 methods differ in cellular mechanism of action and off-target effects. Using a library of 50 validated ASOs and siRNAs to the same targets, the authors characterized the differential effects of these 2 technologies using a HeLa cell G2-M cell cycle assay. Although knockdown of a variety of targets by ASOs or siRNAs affected the cell cycle profile, few of those targets were affected by both ASOs and siRNAs. Distribution analysis of population changes induced through target knockdown led to the identification of targets that, when inhibited, could affect the G2-M transition in the cell cycle in a statistically significant manner. The distinctly different mechanisms of action of these 2 forms of gene silencing may help define the use of these treatments in both clinical and research environments.
Collapse
Affiliation(s)
- Jonathan Low
- Cancer Growth and Translational Genetics, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khamly K, Jefford M, Michael M, Zalcberg J. Beyond 5-fluorouracil: new horizons in systemic therapy for advanced colorectal cancer. Expert Opin Investig Drugs 2006; 14:607-28. [PMID: 16004591 DOI: 10.1517/13543784.14.6.607] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Worldwide, colorectal cancer is a common cancer and a major cause of morbidity and mortality. Patients frequently present with, or later develop, metastatic disease. Median survival with supportive care alone is approximately 6 - 8 months. However, a number of recent developments have greatly increased the range of therapeutic options, improving median survival to > 20 months. Cytotoxic agents such as capecitabine, irinotecan and oxaliplatin are now established treatment strategies. In parallel, an improved understanding of tumour biology has led to the development of non-cytotoxic targeted therapies. Examples include bevacizumab (targeting tumour angiogenesis) and cetuximab (targeting the epidermal growth factor receptor). These agents have recently been incorporated into standard management. This paper reviews these and other advances in the care of patients with advanced colorectal cancer and discusses a number of agents that are currently under development.
Collapse
Affiliation(s)
- Kenneth Khamly
- Division of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Victoria 8006, Australia.
| | | | | | | |
Collapse
|
22
|
Abstract
Abnormal gene expression is a hallmark of many diseases. Gene-specific downregulation of aberrant genes could be useful therapeutically and potentially less toxic than conventional therapies due its specificity. Over the years, many strategies have been proposed for silencing gene expression in a gene-specific manner. Three major approaches are antisense oligonucleotides (AS-ONs), ribozymes/DNAzymes, and RNA interference (RNAi). In this brief review, we will discuss the successes and shortcomings of these three gene-silencing methods, and the approaches being taken to improve the effectiveness of antisense molecules. We will also provide an overview of some of the clinical applications of antisense therapy.
Collapse
Affiliation(s)
- A Kalota
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia PA, 19104, USA
| | | | | |
Collapse
|
23
|
Kulesz-Martin M, Lagowski J, Fei S, Pelz C, Sears R, Powell MB, Halaban R, Johnson J. Melanocyte and keratinocyte carcinogenesis: p53 family protein activities and intersecting mRNA expression profiles. J Investig Dermatol Symp Proc 2005; 10:142-52. [PMID: 16363065 DOI: 10.1111/j.1087-0024.2005.200405.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Melanocytes and keratinocytes were analyzed for potential roles of p53, p73, and p63 tumor suppressor family proteins and of malignancy-specific gene expression changes in the etiology of multi-step cancer. Melanocytes expressed deltaNp73alpha, two p63 isoforms and p53. Although p21 and Noxa mRNA levels increased following DNA damage, p53 family member binding to p21 and Noxa DNA probes was undetectable, suggesting p53 family-independent responses. In contrast, keratinocytes expressed multiple isoforms each of p73 and p63 that were induced to bind p21 and Noxa DNA probes after ionizing (IR) or after ultraviolet B (UVB) irradiation, correlating with p21 and Noxa mRNA induction and with apoptosis. Interestingly, IR-resistant malignant melanocytes and keratinocytes both exhibited Noxa mRNA induction after UVB treatment, correlating with DNA binding of p53 family proteins to the Noxa probe only in keratinocytes. To uncover other malignancy-specific events, we queried mouse initiated keratinocyte clones for early changes that were exacerbated in malignant derivatives and also differentially expressed in human advanced melanoma versus normal melanocytes. Using a new method for ranking and normalization of microarray data for 5000 probe sets, 27 upregulated and 13 downregulated genes satisfied our query. Of these, the majority was associated with late-stage human cancers and six were novel genes. Thus, clonal lineage mouse models representing early through late cancer progression stages may inform the focus on early, potentially causal events from microarray studies of human cancers, facilitating prognosis and molecular therapy.
Collapse
Affiliation(s)
- Molly Kulesz-Martin
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Funasaka Y, Sato H, Chakraborty AK, Ohashi A, Chrousos GP, Ichihashi M. Expression of proopiomelanocortin, corticotropin-releasing hormone (CRH), and CRH receptor in melanoma cells, nevus cells, and normal human melanocytes. J Investig Dermatol Symp Proc 1999; 4:105-9. [PMID: 10536983 DOI: 10.1038/sj.jidsp.5640192] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proopiomelanocortin (POMC) is a 31 kDa prohormone that is processed to various bioactive peptides, including adrenocorticotropin (ACTH), melanotropins (alpha, beta, gamma-MSH), lipotropins, and endorphins. POMC is expressed not only in the pituitary gland but also in a variety of nonpituitary organs and tumors, including melanomas. We previously showed that normal human melanocytes produce and secrete alpha-MSH and ACTH, and furthermore, that advanced melanoma cells generally produce higher amounts of POMC peptides that correlate with tumor progression. To elucidate the mechanism of this upregulation, the expression of genes encoding corticotropin-releasing hormone (CRH) and its receptor, CRH-R, as well as POMC and the MSH receptor (MC1-R), was evaluated by reverse transcriptase-polymerase chain reaction using cultured human melanoma cells, nevus cells, and normal melanocytes. Our results show that all melanocytic cells express CRH, CRH-R, POMC, and MC1-R, with highest intensities in melanoma cells. Furthermore, immunohistochemistry shows that CRH as well as POMC is strongly expressed in advanced melanomas, such as vertically growing lesions of acral lentiginous, nodular and metastatic melanomas, in contrast to negative expression in nevus cells. These results indicate that tumor progression accentuates CRH, CRH-R, and POMC expression by melanoma cells.
Collapse
Affiliation(s)
- Y Funasaka
- Department of Dermatology, Kobe University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|