1
|
Tahir R, Renuse S, Udainiya S, Madugundu AK, Cutler JA, Nirujogi RS, Na CH, Xu Y, Wu X, Pandey A. Mutation-Specific and Common Phosphotyrosine Signatures of KRAS G12D and G13D Alleles. J Proteome Res 2020; 20:670-683. [PMID: 32986951 DOI: 10.1021/acs.jproteome.0c00587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
KRAS is one of the most frequently mutated genes across all cancer subtypes. Two of the most frequent oncogenic KRAS mutations observed in patients result in glycine to aspartic acid substitution at either codon 12 (G12D) or 13 (G13D). Although the biochemical differences between these two predominant mutations are not fully understood, distinct clinical features of the resulting tumors suggest involvement of disparate signaling mechanisms. When we compared the global phosphotyrosine proteomic profiles of isogenic colorectal cancer cell lines bearing either G12D or G13D KRAS mutation, we observed both shared as well as unique signaling events induced by the two KRAS mutations. Remarkably, while the G12D mutation led to an increase in membrane proximal and adherens junction signaling, the G13D mutation led to activation of signaling molecules such as nonreceptor tyrosine kinases, MAPK kinases, and regulators of metabolic processes. The importance of one of the cell surface molecules, MPZL1, which was found to be hyperphosphorylated in G12D cells, was confirmed by cellular assays as its knockdown led to a decrease in proliferation of G12D but not G13D expressing cells. Overall, our study reveals important signaling differences across two common KRAS mutations and highlights the utility of our approach to systematically dissect subtle differences between related oncogenic mutants and potentially lead to individualized treatments.
Collapse
Affiliation(s)
- Raiha Tahir
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Santosh Renuse
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Savita Udainiya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Pre-Doctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Chan Hyun Na
- Department of Neurology, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yaoyu Xu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xinyan Wu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.,Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
2
|
Mismatch repair status between primary colorectal tumor and metastatic tumor, a retrospective consistent study. Biosci Rep 2020; 39:221418. [PMID: 31804673 PMCID: PMC6911159 DOI: 10.1042/bsr20190730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/07/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
Objectives Mismatch repair (MMR) and Microsatellite instability (MSI) are critical when considering immunotherapy and chemotherapeutic drugs an option for patients with colorectal cancer (CRC). We investigated the consistence of MMR status as well as MSI between primary CRC and metastatic tumor to see if the expression of four MMR proteins and the status of MSI are congruent in primary tumor and metastatic tumor. With the results of the study and future more relevant studies, the sites of MMR testing may be more precise for individualized treatment. Study design Patients with clear diagnosis of sporadic CRC and distal organ metastasis were identified from a prospectively established database. The status of MMR and MSI was evaluated by immunohistochemistry (IHC) and Polymerase Chain Reaction (PCR) respectively of synchronously obtained tissue samples. Results Forty patients with complete clinical date were enrolled. For primary tumor, 36/40 samples were tested as MMR-proficient (pMMR) and 4 were MMR-deficient (dMMR). For metastatic samples, 30 samples were tested as pMMR while 10 samples were dMMR. Six out of forty patients were tested as inconsistent status of MMR and MSI. After statistical analysis, the expression status of MMR was not statistically significant between primary and metastatic tumors (P=0.1405, larger than 0.05). Conclusion Based on our samples, the status of MMR between primary CRC and metastatic tumor was consistent, thus test of MMR status can be performed at both sites. However, due to the limited samples enrolled in our study, the results should be interpreted carefully.
Collapse
|
3
|
Ilyas M. Next-Generation Sequencing in Diagnostic Pathology. Pathobiology 2017; 84:292-305. [PMID: 29131018 DOI: 10.1159/000480089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/06/2017] [Indexed: 12/26/2022] Open
Abstract
Interrogation of tissue informs on patient management through delivery of a diagnosis together with associated clinically relevant data. The diagnostic pathologist will usually evaluate the morphological appearances of a tissue sample and, occasionally, the pattern of expression of a limited number of biomarkers. Recent developments in sequencing technology mean that DNA and RNA from tissue samples can now be interrogated in great detail. These new technologies, collectively known as next-generation sequencing (NGS), generate huge amounts of data which can be used to support patient management. In order to maximize the utility of tissue interrogation, the molecular data need to be interpreted and integrated with the morphological data. However, in order to interpret the molecular data, the pathologist must understand the utility and the limitations of NGS data. In this review, the principles behind NGS technologies are described. In addition, the caveats in the interpretation of the data are discussed, and a scheme is presented to "classify" the types of data which are generated. Finally, a glossary of new terminology is included to help pathologists become familiar with the lexicon of NGS-derived molecular data.
Collapse
|
4
|
Kamel HFM, Al-Amodi HSAB. Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:220-235. [PMID: 28813639 PMCID: PMC5582794 DOI: 10.1016/j.gpb.2016.11.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/29/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Cancer therapy agents have been used extensively as cytotoxic drugs against tissue or organ of a specific type of cancer. With the better understanding of molecular mechanisms underlying carcinogenesis and cellular events during cancer progression and metastasis, it is now possible to use targeted therapy for these molecular events. Targeted therapy is able to identify cancer patients with dissimilar genetic defects at cellular level for the same cancer type and consequently requires individualized approach for treatment. Cancer therapy begins to shift steadily from the traditional approach of “one regimen for all patients” to a more individualized approach, through which each patient will be treated specifically according to their specific genetic defects. Personalized medicine accordingly requires identification of indicators or markers that guide in the decision making of such therapy to the chosen patients for more effective therapy. Cancer biomarkers are frequently used in clinical practice for diagnosis and prognosis, as well as identification of responsive patients and prediction of treatment response of cancer patient. The rapid breakthrough and development of microarray and sequencing technologies is probably the main tool for paving the way toward “individualized biomarker-driven cancer therapy” or “personalized medicine”. In this review, we aim to provide an updated knowledge and overview of the current landscape of cancer biomarkers and their role in personalized medicine, emphasizing the impact of genomics on the implementation of new potential targeted therapies and development of novel cancer biomarkers in improving the outcome of cancer therapy.
Collapse
Affiliation(s)
- Hala Fawzy Mohamed Kamel
- Biochemistry Department, Faculty of Medicine, Umm AL-Qura University, Makhha 21955, Saudi Arabia; Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt.
| | | |
Collapse
|
5
|
Buim ME, Fanelli MF, Souza VS, Romero J, Abdallah EA, Mello CA, Alves V, Ocea LM, Mingues NB, Barbosa PN, Tyng CJ, Chojniak R, Chinen LT. Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer. Cancer Biol Ther 2015; 16:1289-95. [PMID: 26252055 DOI: 10.1080/15384047.2015.1070991] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Quantification of Circulating Tumor Cells (CTCs) as a prognostic marker in metastatic colorectal cancer (mCRC) has already been validated and approved for routine use. However, more than quantification, qualification or characterization of CTCs is gaining importance, since the genetic characterization of CTCs may reflect, in a real time fashion, genetic profile of the disease. OBJECTIVE To characterize KRAS mutations (codon 12 and 13) in CTCs from patients with mCRC and to compare with matched primary tumor. Additionally, correlate these mutations with clinical and pathological features of patients. METHODS Blood samples were collected from 26 patients with mCRC from the AC Camargo Cancer Center (São Paulo-Brazil). CTCs were isolated by ISET technology (Isolation by Size of Epithelial Tumors; Rarecells Diagnostics, France) and mutations analyzes were performed by pyrosequencing (QIAGEN). RESULTS KRAS mutation was detected in 7 of the 21 cases (33%) of samples from CTCs. In matched primary tumors, 9 of the 24 cases (37.5%) were found KRAS mutated. We observed that 5 of the 9 samples with KRAS mutation in their primary tumor had also KRAS mutation in CTCs, meaning a concordance of 71% of matched cases (P = 0.017). KRAS mutation neither on primary tumor nor in CTCs was associated with clinical-pathological parameters analyzed. CONCLUSION Faced with a polyclonal disease like colorectal cancer, which is often treated with alternating and successive lines of chemotherapy, real time genetic characterization of CTCs, in a fast and feasible fashion, can provide important information to clinical management of metastatic patients. Although our cohort was limited, it was possible to show a high grade of concordance between primary tumor and CTCs, which suggests that CTCs can be used as surrogate of primary tumors in clinical practice, when the knowledge of mutation profile is necessary and the primary tumor is not available.
Collapse
Affiliation(s)
- Marcilei Ec Buim
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil.,b Department of Health ; Universidade Nove de Julho ; São Paulo , Brazil
| | - Marcello F Fanelli
- c Department of Clinical Oncology ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Virgilio S Souza
- c Department of Clinical Oncology ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Juliana Romero
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Emne A Abdallah
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Celso Al Mello
- c Department of Clinical Oncology ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Vanessa Alves
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Luciana Mm Ocea
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Natália B Mingues
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Paula Nvp Barbosa
- d Department of Image ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Chiang J Tyng
- d Department of Image ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Rubens Chojniak
- d Department of Image ; AC Camargo Cancer Center ; São Paulo , Brazil
| | - Ludmilla Td Chinen
- a International Reserch Center; AC Camargo Cancer Center ; São Paulo , Brazil
| |
Collapse
|
6
|
Schmoll HJ, Wittig B, Arnold D, Riera-Knorrenschild J, Nitsche D, Kroening H, Mayer F, Andel J, Ziebermayr R, Scheithauer W. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: a randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol 2014; 140:1615-24. [PMID: 24816725 PMCID: PMC4131138 DOI: 10.1007/s00432-014-1682-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/28/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE This phase II study evaluated the synthetic DNA-based immunomodulator and Toll-like receptor 9 agonist MGN1703 as maintenance treatment in metastatic colorectal carcinoma (mCRC). METHODS Fifty-nine patients with mCRC and disease control after standard first-line chemotherapy were randomised to MGN1703 60 mg (N = 43) or placebo (N = 16). RESULTS The hazard ratio (HR) for the primary endpoint [progression-free survival (PFS) from the start of maintenance] was 0.56 (95 % CI 0.29-1.08; P = 0.07) and 0.55 (95 % CI 0.3-1.0; P = 0.04) by independent and investigator review, respectively. MGN1703 significantly improved PFS measured from the start of induction therapy versus placebo on independent (HR 0.49; 95 % CI 0.26-0.94; P = 0.03) and investigator review (HR 0.50; 95 % CI 0.31-1.02; P = 0.02). Overall survival (OS) data remain immature (HR 95 %; 95 % CI 0.3-1.5; P = 0.29) with 28/43 patients alive after a medium follow-up of >17 months. Retrospective subgroup analysis showed a significant effect of MGN1703 on PFS versus placebo in patients with greater than median tumour size reduction and normalised carcinoembryonic antigen concentrations following induction therapy, and in patients with elevated activated NKT cells ≥3.08 %. Adverse events were mild to moderate and limited to injection-site reactions or linked to general immune system activation. CONCLUSIONS MGN1703 maintenance treatment was well tolerated and appears to induce durable and prolonged PFS and disease control in a subgroup of patients with mCRC following induction therapy. Activated NKT cells may be a predictive biomarker for selecting patients likely to benefit more from MGN1703.
Collapse
Affiliation(s)
- Hans-Joachim Schmoll
- Department of Internal Medicine IV, Oncology/Hematology, University Clinic Halle (Saale), Center for Cell and Gene Therapy, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Toulany M, Schickfluss TA, Eicheler W, Kehlbach R, Schittek B, Rodemann HP. Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation. Breast Cancer Res 2011; 13:R28. [PMID: 21392397 PMCID: PMC3219189 DOI: 10.1186/bcr2845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/27/2010] [Accepted: 03/10/2011] [Indexed: 12/22/2022] Open
Abstract
Introduction Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation. Methods IR-induced YB-1 phosphorylation in K-RAS wild-type (K-RASwt) and K-RAS-mutated (K-RASmt) breast cancer cell lines was investigated. Using pharmacological inhibitors, small interfering RNA (siRNA) and plasmid-based overexpression approaches, we analyzed pathways involved in YB-1 phosphorylation by IR. Using γ-H2AX foci and standard colony formation assays, we investigated the function of YB-1 in repair of IR-induced DNA double-stranded breaks (DNA-DSB) and postirradiation survival was investigated. Results The average level of phosphorylation of YB-1 in the breast cancer cell lines SKBr3, MCF-7, HBL100 and MDA-MB-231 was significantly higher than that in normal cells. Exposure to IR and stimulation with erbB1 ligands resulted in phosphorylation of YB-1 in K-RASwt SKBr3, MCF-7 and HBL100 cells, which was shown to be K-Ras-independent. In contrast, lack of YB-1 phosphorylation after stimulation with either IR or erbB1 ligands was observed in K-RASmt MDA-MB-231 cells. Similarly to MDA-MB-231 cells, YB-1 became constitutively phosphorylated in K-RASwt cells following the overexpression of mutated K-RAS, and its phosphorylation was not further enhanced by IR. Phosphorylation of YB-1 as a result of irradiation or K-RAS mutation was dependent on erbB1 and its downstream pathways, PI3K and MAPK/ERK. In K-RASmt cells K-RAS siRNA as well as YB-1 siRNA blocked repair of DNA-DSB. Likewise, YB-1 siRNA increased radiation sensitivity. Conclusions IR induces YB-1 phosphorylation. YB-1 phosphorylation induced by oncogenic K-Ras or IR enhances repair of DNA-DSB and postirradiation survival via erbB1 downstream PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard Karls University Tübingen, Roentgenweg 11, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Deschoolmeester V, Baay M, Specenier P, Lardon F, Vermorken JB. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist 2010; 15:699-731. [PMID: 20584808 PMCID: PMC3228001 DOI: 10.1634/theoncologist.2010-0025] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 05/01/2010] [Indexed: 02/06/2023] Open
Abstract
Rapidly growing insights into the molecular biology of colorectal cancer (CRC) and recent developments in gene sequencing and molecular diagnostics have led to high expectations for the identification of molecular markers to be used in optimized and tailored treatment regimens. However, many of the published data on molecular biomarkers are contradictory in their findings and the current reality is that no molecular marker, other than the KRAS gene in the case of epidermal growth factor receptor (EGFR)- targeted therapy for metastatic disease, has made it into clinical practice. Many markers investigated suffer from technical shortcomings, resulting from lack of quantitative techniques to capture the impact of the molecular alteration. This understanding has recently led to the more comprehensive approaches of global gene expression profiling or genome-wide analysis to determine prognostic and predictive signatures in tumors. In this review, an update of the most recent data on promising biological prognostic and/or predictive markers, including microsatellite instability, epidermal growth factor receptor, KRAS, BRAF, CpG island methylator phenotype, cytotoxic T lymphocytes, forkhead box P3-positive T cells, receptor for hyaluronic acid-mediated motility, phosphatase and tensin homolog, and T-cell originated protein kinase, in patients with CRC is provided.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | |
Collapse
|
9
|
Smith G, Bounds R, Wolf H, Steele RJC, Carey FA, Wolf CR. Activating K-Ras mutations outwith 'hotspot' codons in sporadic colorectal tumours - implications for personalised cancer medicine. Br J Cancer 2010; 102:693-703. [PMID: 20147967 PMCID: PMC2837563 DOI: 10.1038/sj.bjc.6605534] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Response to EGFR-targeted therapies in colorectal cancer patients has been convincingly associated with Kirsten-Ras (K-Ras) mutation status. Current mandatory mutation testing for patient selection is limited to the K-Ras ‘hotspot’ codons 12 and 13. Methods: Colorectal tumours (n=106) were screened for additional K-Ras mutations, phenotypes compared in transformation and Ras GTPase activating assays and gene and pathway changes induced by individual K-Ras mutants identified by microarray analysis. Taqman-based gene copy number and FISH analyses were used to investigate K-Ras gene amplification. Results: Four additional K-Ras mutations (Leu19Phe (1 out of 106 tumours), Lys117Asn (1 out of 106), Ala146Thr (7 out of 106) and Arg164Gln (1 out of 106)) were identified. Lys117Asn and Ala146Thr had phenotypes similar to the hotspot mutations, whereas Leu19Phe had an attenuated phenotype and the Arg164Gln mutation was phenotypically equivalent to wt K-Ras. We additionally identified a new K-Ras gene amplification event, present in approximately 2% of tumours. Conclusions: The identification of mutations outwith previously described hotspot codons increases the K-Ras mutation burden in colorectal tumours by one-third. Future mutation screening to facilitate optimal patient selection for treatment with EGFR-targeted therapies should therefore be extended to codon 146, and in addition should consider the unique molecular signatures associated with individual K-Ras mutations.
Collapse
Affiliation(s)
- G Smith
- Biomedical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
To determine the variety of chemotherapy drugs administrable for malignant pancreatic neoplasm as a result of typification with endoscopic ultrasonography-fine needle aspiration (EUS-FNA). A retrospective assessment, in one center, over a period of 1 year. Only malignant pancreatic neoplasm diagnosed by EUS-FNA was recorded. Benign (serous cystic neoplasm) and potentially malignant lesions (mucinous cystic neoplasm and intraductal papillary-mucinous neoplasm) were excluded. Medical data were recorded and Oncological Pharmacy records were studied. Ductal adenocarcinoma were detected in 17 patients (N = 17/22), 2 of them with adenocarcinoma in signet ring and 1 with mucinous adenocarcinoma. The primary therapies used were as follows: Whipple pancreaticoduodenectomy (3), biliary stent by endoscopic retrograde cholangiopancreatography (3), radiological transhepatic percutaneous stent (2), intestinal bypass (2), and a gastric stent (1). The adjuvant drugs used were gemcitabine (10), erlotinib (3), and cetuximab (1), and also radiotherapy was used (1). An unresectable squamous cell carcinoma (N = 1) of the tail was detected, and gemcitabine + vinorelbine + fluorouracil + cisplatin used. Nonfunctioning neuroendocrine tumors were seen in 3 (N = 3) cases and long-acting somatostatin analogues were used (1); the remaining 2 patients showed resectable tumors and were resected accordingly. A metastasis to the pancreatic head in a hepatocellular carcinoma was found in 1 patient (N = 1), allowing specific treatment with sorafenib. Histopathologic analysis with EUS-FNA implies a variety of different treatments. Optimal management was achieved as a result of improved diagnosis, with the advent of new molecular genetic diagnostic methods facilitating the design of specific new therapy and neoadjuvant targeting strategies.
Collapse
|
11
|
Araki T, Shimizu K, Nakamura K, Nakamura T, Mitani Y, Obayashi K, Fujita Y, Kakegawa S, Miyamae Y, Kaira K, Ishidao T, Lezhava A, Hayashizaki Y, Takeyoshi I, Yamamoto K. Usefulness of peptide nucleic acid (PNA)-clamp smart amplification process version 2 (SmartAmp2) for clinical diagnosis of KRAS codon 12 mutations in lung adenocarcinoma: comparison of PNA-clamp SmartAmp2 and PCR-related methods. J Mol Diagn 2009; 12:118-24. [PMID: 20007840 DOI: 10.2353/jmoldx.2010.090081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KRAS is an oncogene that can be activated by mutations. Patients with non-small cell lung cancer who have KRAS mutations do not respond to tyrosine kinase inhibitors; therefore, accurate detection of KRAS mutations is important for deciding therapeutic strategies. Although sequencing-related techniques have been frequently used, they are usually too complex, have low sensitivity, and are time-consuming for routine screening in clinical situations. We evaluated peptide nucleic acid (PNA)-clamp smart amplification process version 2 (SmartAmp2) as a detection method for KRAS codon 12 mutations in patient specimens compared with traditional sequencing and polymerase chain reaction-related methods. Among 172 lung adenocarcinoma samples, direct sequencing, enzyme-enriched sequencing, and PNA-enriched sequencing showed that 16 (9.3%), 26 (15.7%), and 28 (16.3%) tumors, respectively, contained KRAS mutations in codon 12. Using PNA-clamp SmartAmp2, we could identify 31 (18.0%) tumors that had KRAS mutations in codon 12 within 60 minutes, three of which were undetected by polymerase chain reaction-related methods. On the other hand, we examined 30 nonmalignant peripheral lung tissue specimens and found no mutations in any of the samples using PNA-clamp SmartAmp2. In this study, we confirmed that PNA-clamp SmartAmp2 has high sensitivity and accuracy and is suitable for the clinical diagnosis of KRAS codon 12 mutations.
Collapse
Affiliation(s)
- Takuya Araki
- Department of Clinical Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Low-dose metronomic chemotherapy of paclitaxel synergizes with cetuximab to suppress human colon cancer xenografts. Anticancer Drugs 2009; 20:355-63. [PMID: 19318912 DOI: 10.1097/cad.0b013e3283299f36] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Low-dose metronomic (LDM) chemotherapy represents a new strategy to treat solid tumors by stronger antiangiogenic activity and lower side effects, especially in combination with other antiangiogenic agents. This study aims to investigate whether LDM chemotherapy of paclitaxel could synergize with cetuximab, an antiangiogenic agent to suppress HT-29 human colon tumors in BALB/c nude mice. To explore its possible mechanism, the tumor vascular status was detected by staining with anti-CD31 Ab and the tumoral expression of thrombospondin-1 was examined by immunohistochemistry, western blot analysis, and real-time PCR. Our results showed that empirical metronomic paclitaxel regimens in combination with cetuximab induces significant and durable antitumor responses without overt toxicity. Paclitaxel LDM chemotherapy displayed stronger antiangiogenic activity than maximum tolerable dose (MTD) chemotherapy, whereas MTD chemotherapy induced more apoptotic cells. The combinational therapy with LDM and cetuximab showed the strongest antiangiogenic activity among all the groups. Paclitaxel LDM chemotherapy also dramatically upregulated the expression of thrombospondin-1, but MTD chemotherapy did not. These results suggest that the combination of paclitaxel LDM chemotherapy and cetuximab represents a potent strategy to combat colon cancers.
Collapse
|