1
|
Elisia I, Yeung M, Kowalski S, Wong J, Rafiei H, Dyer RA, Atkar-Khattra S, Lam S, Krystal G. Omega 3 supplementation reduces C-reactive protein, prostaglandin E 2 and the granulocyte/lymphocyte ratio in heavy smokers: An open-label randomized crossover trial. Front Nutr 2022; 9:1051418. [PMID: 36532545 PMCID: PMC9751896 DOI: 10.3389/fnut.2022.1051418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVES Given the current controversy concerning the efficacy of omega 3 supplements at reducing inflammation, we evaluated the safety and efficacy of omega 3 on reducing inflammation in people with a 6-year lung cancer risk >1.5% and a C reactive protein (CRP) level >2 mg/L in a phase IIa cross-over study. MATERIALS AND METHODS Forty-nine healthy participants ages 55 to 80, who were still smoking or had smoked in the past with ≥30 pack-years smoking history, living in British Columbia, Canada, were randomized in an open-label trial to receive 2.4 g eicosapentaenoic acid (EPA) + 1.2 g docosahexaenoic acid (DHA)/day for 6 months followed by observation for 6 months or observation for 6 months first and then active treatment for the next 6 months. Blood samples were collected over 1 year for measurement of plasma CRP, plasma and red blood cell (RBC) membrane levels of EPA, DHA and other fatty acids, Prostaglandin E2 (PGE2), Leukotriene B4 (LTB4) and an inflammatory marker panel. RESULTS Twenty one participants who began the trial within the active arm completed the trial while 20 participants who started in the control arm completed the study. Taking omega 3 resulted in a significant decrease in plasma CRP and PGE2 but not LTB4 levels. Importantly, the effect size for the primary outcome, CRP values, at the end of the intervention relative to baseline was medium (Cohen's d = 0.56). DHA, but not EPA levels in RBC membranes inversely correlated with PGE2 levels. Omega 3 also led to a significant reduction in granulocytes and an increase in lymphocytes. These high-dose omega 3 supplements were well tolerated, with only minor gastrointestinal symptoms in a subset of participants. CONCLUSION Omega 3 fatty acids taken at 3.6 g/day significantly reduce systemic inflammation with negligible adverse health effects in people who smoke or have smoked and are at high risk of lung cancer.ClinicalTrials.gov, NCT number: NCT03936621.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Hossein Rafiei
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Roger A. Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sukhinder Atkar-Khattra
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
2
|
Lee HJ, Park JU, Guo RH, Kang BY, Park IK, Kim YR. Anti-Inflammatory Effects of Canavalia gladiata in Macrophage Cells and DSS-Induced Colitis Mouse Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1571-1588. [PMID: 31645121 DOI: 10.1142/s0192415x19500800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Canavalia gladiata, known as sword bean, has been used as a Chinese traditional medicine for anti-inflammatory effects. However, the action mechanisms of sword bean have not yet been clearly defined. In the present study, the whole parts of a ripened sword bean (RSB) and the green sword bean (GSB) containing bean pod were extracted with ethanol by reflux extraction. The two crude extracts (RSBE and GSBE) from RSB and GSB were validated by a liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis of gallic acid as a reference chemical. The anti-inflammatory effects of two sword bean extracts were extensively investigated using LPS-stimulated macrophage cells. First, RSBE and GSBE significantly inhibited the production of pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), and nitric oxide (NO) in LPS-induced RAW264.7 cells. RSBE and GSBE showed no cytotoxicity to RAW264.7 cells and mouse peritoneal macrophage cells. In addition, the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) induced by LPS in RAW264.7 cells was significantly decreased by RSBE and GSBE. Western blotting and immunostaining analysis showed that RSBE and GSBE inhibited the nuclear translocation of NF-κB subunits, which correlated with the inhibitory effects on inhibitor kappa B (IκB) degradation. In dextran sulfated sodium (DSS)-induced colitis mice model, RSBE restored body weight, colon length, and the levels of pro-inflammatory cytokines, such as TNF-α, IL-6, interleukin-1β (IL-1β), and interferon-γ (IFN-γ). In addition, RSBE significantly suppressed the expression of COX-2, iNOS, and NF-κB.
Collapse
Affiliation(s)
- Hwa-Jeong Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jung Up Park
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bok Yun Kang
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Panigrahy D, Gartung A, Yang J, Yang H, Gilligan MM, Sulciner ML, Bhasin SS, Bielenberg DR, Chang J, Schmidt BA, Piwowarski J, Fishbein A, Soler-Ferran D, Sparks MA, Staffa SJ, Sukhatme V, Hammock BD, Kieran MW, Huang S, Bhasin M, Serhan CN, Sukhatme VP. Preoperative stimulation of resolution and inflammation blockade eradicates micrometastases. J Clin Invest 2019; 129:2964-2979. [PMID: 31205032 DOI: 10.1172/jci127282] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Gartung
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Haixia Yang
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan L Sulciner
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati S Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Jaimie Chang
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Birgitta A Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Piwowarski
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Fishbein
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Dulce Soler-Ferran
- Center for Vascular Biology Research.,Department of Pathology, and.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, and.,Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Manoj Bhasin
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vikas P Sukhatme
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine and Center for Affordable Medical Innovation, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Mao JT, Smoake J, Park HK, Lu QY, Xue B. Grape Seed Procyanidin Extract Mediates Antineoplastic Effects against Lung Cancer via Modulations of Prostacyclin and 15-HETE Eicosanoid Pathways. Cancer Prev Res (Phila) 2016; 9:925-932. [PMID: 27658889 DOI: 10.1158/1940-6207.capr-16-0122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
Abstract
Grape seed procyanidin extract (GSE) has been reported to exert antineoplastic properties via the inhibition of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) eicosanoid pathways. In addition, ample data link carcinogenesis to inflammatory events involving other major eicosanoid metabolic pathways, including prostacyclin (PGI2) and 15-hydroxyeicosatetraenoic acid (15-HETE). We therefore evaluated the effects of GSE on prostacyclin synthase (PTGIS)/PGI2 and 15-lipoxigenase-2 (15-LOX-2)/15-HETE productions by human lung premalignant and malignant cells and correlated the findings with antiproliferative or proapoptotic effects of GSE. The effects of GSE on PGI2 and 15-HETE productions by human bronchoalveolar lavage (BAL) cells ex vivo were also determined. We further evaluated the bioactivity of oral administration of leucoselect phytosome (a standardized GSE) in the lungs of subjects participating in a lung cancer chemoprevention trial, by comparing the antiproliferative effects of coculturing matched pre- versus posttreatment BAL fluids with lung premalignant and malignant cells. GSE significantly increased PGI2 (as measured by 6-keto PGF1α) and 15-HETE productions by these cells. Transfections of PTGIS or 15-LOX-2-specific siRNA partially abrogated the antiproliferative or proapoptotic effects of GSE in lung premalignant and malignant cells, respectively. GSE also increased PTGIS and inhibition of caspase-3, and transfection of 15-LOX-2 siRNA abrogated the GSE-induced apoptosis in A549 cells. In addition, culture supernatants from ex vivo GSE-treated baseline BAL cells, as well as BAL fluids from subjects treated with leucoselect phytosome, significantly decreased proliferations of lung premalignant and malignant cells. Our findings support the continued investigation of GSE as an anti-neoplastic and chemopreventive agent against lung cancer. Cancer Prev Res; 9(12); 925-32. ©2016 AACR.
Collapse
Affiliation(s)
- Jenny T Mao
- Pulmonary, Critical Care, and Sleep Medicine Section, New Mexico Veterans Administration Health Care System, and University of New Mexico, Albuquerque, New Mexico.
| | - Jane Smoake
- Pulmonary, Critical Care, and Sleep Medicine Section, New Mexico Veterans Administration Health Care System, and University of New Mexico, Albuquerque, New Mexico
| | - Heesung K Park
- Pulmonary, Critical Care, and Sleep Medicine Section, New Mexico Veterans Administration Health Care System, and University of New Mexico, Albuquerque, New Mexico
| | - Qing-Yi Lu
- UCLA Center for Human Nutrition, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bingye Xue
- Pulmonary, Critical Care, and Sleep Medicine Section, New Mexico Veterans Administration Health Care System, and University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
5
|
Synthesis, biological activity screening and molecular modeling study of acylaminoacetamide derivatives. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Song JM, Qian X, Molla K, Teferi F, Upadhyaya P, O Sullivan G, Luo X, Kassie F. Combinations of indole-3-carbinol and silibinin suppress inflammation-driven mouse lung tumorigenesis by modulating critical cell cycle regulators. Carcinogenesis 2015; 36:666-75. [PMID: 25896445 DOI: 10.1093/carcin/bgv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is an important risk factor for lung cancer. Therefore, identification of chemopreventive agents that suppress inflammation-driven lung cancer is indispensable. We studied the efficacy of combinations of indole-3-carbinol (I3C) and silibinin (Sil), 20 µmol/g diet each, against mouse lung tumors induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and driven by lipopolysaccharide (LPS), a potent inflammatory agent and constituent of tobacco smoke. Mice treated with NNK + LPS developed 14.7±4.1 lung tumors/mouse, whereas mice treated with NNK + LPS and given combinations of I3C and Sil had 7.1±4.5 lung tumors/mouse, corresponding to a significant reduction of 52%. Moreover, the number of largest tumors (>1.0mm) was significantly reduced from 6.3±2.9 lung tumors/mouse in the control group to 1.0±1.3 and 1.6±1.8 lung tumors/mouse in mice given I3C + Sil and I3C alone, respectively. These results were paralleled by significant reductions in the level of proinflammatory and procarcinogenic proteins (pSTAT3, pIκBα and COX-2) and proteins that regulate cell proliferation (pAkt, cyclin D1, CDKs 2, 4, 6 and pRB). Further studies in premalignant bronchial cells showed that the antiproliferative effects of I3C + Sil were higher than the individual compounds and these effects were mediated by targeting cyclin D1, CDKs 2, 4 and 6 and pRB. I3C + Sil suppressed cyclin D1 by reducing its messenger RNA level and by enhancing its proteasomal degradation. Our results showed the potential lung cancer chemopreventive effects of I3C + Sil in smokers/former smokers with chronic pulmonary inflammatory conditions.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xuemin Qian
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kalkidan Molla
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fistum Teferi
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gerry O Sullivan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA and
| | - Xianghua Luo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA and
| |
Collapse
|
7
|
Zhong X, Fan Y, Ritzenthaler JD, Zhang W, Wang K, Zhou Q, Roman J. Novel link between prostaglandin E2 (PGE2) and cholinergic signaling in lung cancer: The role of c-Jun in PGE2-induced α7 nicotinic acetylcholine receptor expression and tumor cell proliferation. Thorac Cancer 2015; 6:488-500. [PMID: 26273406 PMCID: PMC4511329 DOI: 10.1111/1759-7714.12219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/24/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cyclooxygenase-2-derived prostaglandin E2 (PGE2) stimulates tumor cell growth and progression. α7 nicotinic acetylcholine receptor (nAChR) is a major mediator of cholinergic signaling in tumor cells. In the present study, we investigated the mechanisms by which PGE2 increases non-small cell lung cancer (NSCLC) proliferation via α7 nAChR induction. METHODS The effects of PGE2 on α7 nAChR expression, promoter activity, and cell signaling pathways were detected by Western blot analysis, real time reverse transcriptase polymerase chain reaction, and transient transfection assay. The effect of PGE2 on cell growth was determined by cell viability assay. RESULTS We found that PGE2 induced α7 nAChR expression and its promoter activity in NSCLC cells. The stimulatory role of PGE2 on cell proliferation was attenuated by α7 nAChR small interfering ribonucleic acids (siRNA) or acetylcholinesterase. PGE2-induced α7 nAChR expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. Furthermore, PGE2 enhanced α7 nAChR expression via activation of c-Jun N-terminal kinase (JNK), phosphatidylinositol 3-kinase (PI3-K), and protein kinase A (PKA) pathways followed by increased c-Jun expression, a critical transcription factor. Blockade of c-Jun diminished the effects of PGE2 on α7 nAChR promoter activity and protein expression, and cell growth. CONCLUSION Our results demonstrate that PGE2 promotes NSCLC cell growth through increased α7 nAChR expression. This effect is dependent on EP4-mediated activation of JNK, PI3K, and PKA signals that induce c-Jun protein expression and α7 nAChR gene promoter activity. Our findings unveil a novel link between prostanoids and cholinergic signaling.
Collapse
Affiliation(s)
- XiaoRong Zhong
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA ; Laboratory of Molecular Diagnosis of Cancer, Cancer Center, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - Yu Fan
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA ; Lung Cancer Center, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - Jeffrey D Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA
| | - WenJing Zhang
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA
| | - Ke Wang
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA ; Lung Cancer Center, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - QingHua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University Chengdu, Sichuan Province, China
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine Louisville, Kentucky, USA ; Louisville Veterans Affairs Medical Center Louisville, Kentucky, USA
| |
Collapse
|
8
|
|
9
|
Bai X, Yang Q, Shu W, Wang J, Zhang L, Ma J, Xia S, Zhang M, Cheng S, Wang Y, Leng J. Prostaglandin E2 upregulates β1 integrin expression via the E prostanoid 1 receptor/nuclear factor κ-light-chain-enhancer of activated B cells pathway in non-small-cell lung cancer cells. Mol Med Rep 2014; 9:1729-36. [PMID: 24584670 DOI: 10.3892/mmr.2014.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/13/2014] [Indexed: 11/06/2022] Open
Abstract
The prostaglandin E2 (PGE2) E prostanoid (EP)1 receptor shown to be associated with lung cancer cell invasion. However, the mechanism of EP1 receptor-mediated cell migration remains to be elucidated. β1 integrin is an essential regulator of the tumorigenic properties of non-small-cell lung carcinoma (NSCLC) cells. To date, little is known regarding the association between the EP1 receptor and β1 integrin expression. The present study investigated the effect of EP1 receptor activation on β1 integrin expression and cell migration in NSCLC cells. A total of 34 patients with clinical diagnosis of NSCLC and 10 patients with benign disease were recruited for the present study. The expression levels of the EP1 receptor and β1 integrin expression were studied in resected lung tissue using immunohistochemistry. A statistical analysis was performed using Stata se12.0 software. The effects of PGE2, EP1 agonist 17-phenyl trinor-PGE2 (17-PT-PGE2) and the nuclear factor κ-B (NF-κB) inhibitor on β1 integrin expression were investigated on A549 cells. The expression of β1 integrin and the phosphorylation of NF-κB‑p65 Ser536 was investigated by western blot analysis. Cell migration was assessed by a transwell assay. The results demonstrated that β1 integrin and EP1 receptor expression exhibited a positive correlation of evident significance in the 44 samples. The in vitro migration assay revealed that cell migration was increased by 30% when the cells were treated with 5 µM 17-PT-PGE2 and that the pre-treatment of β1 integrin monoclonal antibody inhibited 17-PT-PGE2‑mediated cell migration completely. PGE2 and 17-PT-PGE2 treatment increased β1 integrin expression. RNA interference against the EP1 receptor blocked the PGE2-mediated β1 integrin expression in A549 cells. Treatment with 17-PT-PGE2 induced NF-κB activation, and the selective NF-κB inhibitor pyrrolidinedithiocarbamate inhibited 17-PT-PGE2-mediated β1 integrin expression. In conclusion, the present study indicated that the PGE2 EP1 receptor regulates β1 integrin expression and cell migration in NSCLC cells by activating the NF-κB signaling pathway. Targeting the PGE2/EP1/β1 integrin signaling pathway may aid in the development of new therapeutic strategies for the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Shu
- Department of Periodontal, Institute of Stomatology, The Stomatological Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Wang
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shukai Xia
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanyu Cheng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
10
|
The Role of Inflammation in Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:1-23. [DOI: 10.1007/978-3-0348-0837-8_1] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Szabo E, Mao JT, Lam S, Reid ME, Keith RL. Chemoprevention of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143:e40S-e60S. [PMID: 23649449 PMCID: PMC3749715 DOI: 10.1378/chest.12-2348] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/30/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung cancer is the most common cause of cancer death in men and women in the United States. Cigarette smoking is the main risk factor. Former smokers are at a substantially increased risk of developing lung cancer compared with lifetime never smokers. Chemoprevention refers to the use of specific agents to reverse, suppress, or prevent the process of carcinogenesis. This article reviews the major agents that have been studied for chemoprevention. METHODS Articles of primary, secondary, and tertiary prevention trials were reviewed and summarized to obtain recommendations. RESULTS None of the phase 3 trials with the agents β-carotene, retinol, 13-cis-retinoic acid, α-tocopherol, N-acetylcysteine, acetylsalicylic acid, or selenium has demonstrated beneficial and reproducible results. To facilitate the evaluation of promising agents and to lessen the need for a large sample size, extensive time commitment, and expense, surrogate end point biomarker trials are being conducted to assist in identifying the most promising agents for later-stage chemoprevention trials. With the understanding of important cellular signaling pathways and the expansion of potentially important targets, agents (many of which target inflammation and the arachidonic acid pathway) are being developed and tested which may prevent or reverse lung carcinogenesis. CONCLUSIONS By integrating biologic knowledge, additional early-phase trials can be performed in a reasonable time frame. The future of lung cancer chemoprevention should entail the evaluation of single agents or combinations that target various pathways while working toward identification and validation of intermediate end points.
Collapse
Affiliation(s)
- Eva Szabo
- Lung and Upper Aerodigestive Cancer Research Group, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jenny T Mao
- Division of Pulmonary, Critical Care, and Sleep Medicine, New Mexico VA Health Care System/University of New Mexico, Albuquerque, NM
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Mary E Reid
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Robert L Keith
- VA Eastern Colorado Health Care System, University of Colorado School of Medicine, Denver, CO.
| |
Collapse
|
12
|
Limburg PJ, Mandrekar SJ, Aubry MC, Ziegler KLA, Zhang J, Yi JE, Henry M, Tazelaar HD, Lam S, McWilliams A, Midthun DE, Edell ES, Rickman OB, Mazzone P, Tockman M, Beamis JF, Lamb C, Simoff M, Loprinzi C, Szabo E, Jett J. Randomized phase II trial of sulindac for lung cancer chemoprevention. Lung Cancer 2013; 79:254-61. [PMID: 23261228 PMCID: PMC3566344 DOI: 10.1016/j.lungcan.2012.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sulindac represents a promising candidate agent for lung cancer chemoprevention, but clinical trial data have not been previously reported. We conducted a randomized, phase II chemoprevention trial involving current or former cigarette smokers (≥30 pack-years) utilizing the multi-center, inter-disciplinary infrastructure of the Cancer Prevention Network (CPN). METHODS At least 1 bronchial dysplastic lesion identified by fluorescence bronchoscopy was required for randomization. Intervention assignments were sulindac 150mg bid or an identical placebo bid for 6 months. Trial endpoints included changes in histologic grade of dysplasia (per-participant as primary endpoint and per lesion as secondary endpoint), number of dysplastic lesions (per-participant), and Ki67 labeling index. RESULTS Slower than anticipated recruitment led to trial closure after randomizing participants (n=31 and n=30 in the sulindac and placebo arms, respectively). Pre- and post-intervention fluorescence bronchoscopy data were available for 53/61 (87%) randomized, eligible participants. The median (range) of dysplastic lesions at baseline was 2 (1-12) in the sulindac arm and 2 (1-7) in the placebo arm. Change in dysplasia was categorized as regression:stable:progression for 15:3:8 (58%:12%:31%) subjects in the sulindac arm and 15:2:10 (56%:7%:37%) subjects in the placebo arm; these distributions were not statistically different (p=0.85). Median Ki67 expression (% cells stained positive) was significantly reduced in both the placebo (30 versus 5; p=0.0005) and sulindac (30 versus 10; p=0.0003) arms, but the difference between arms was not statistically significant (p=0.92). CONCLUSIONS Data from this multi-center, phase II squamous cell lung cancer chemoprevention trial do not demonstrate sufficient benefits from sulindac 150mg bid for 6 months to warrant additional phase III testing. Investigation of pathway-focused agents is necessary for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Paul J Limburg
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The level of bronchoalveolar lavage fluid prostaglandine E2; is it diagnostic of bronchogenic carcinoma? EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2012. [DOI: 10.1016/j.ejcdt.2012.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Mao JT, Roth MD, Fishbein MC, Aberle DR, Zhang ZF, Rao JY, Tashkin DP, Goodglick L, Holmes EC, Cameron RB, Dubinett SM, Elashoff R, Szabo E, Elashoff D. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev Res (Phila) 2011; 4:984-93. [PMID: 21733822 DOI: 10.1158/1940-6207.capr-11-0078] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ample studies suggest that the cyclooxygenase-2 (COX-2)/prostaglandin E(2) (PGE(2)) pathway plays a pivotal role in carcinogenesis and that COX-2 inhibition may help prevent lung cancer. Therefore, we conducted a randomized, double-blind, placebo-controlled trial of the COX-2-selective inhibitor celecoxib (400 mg bid for 6 months) in former-smokers (age ≥ 45, ≥ 30 pack-years of smoking, ≥ 1 year of sustained abstinence from smoking). We assessed the impact of celecoxib on cellular and molecular events associated with lung cancer pathogenesis; the primary endpoint was bronchial Ki-67 labeling index (Ki-67 LI) after 6 months of treatment. Of 137 randomized subjects, 101 completed both baseline and 6-month bronchoscopies and were evaluable for the primary endpoint analysis. The beneficial effect on Ki-67 LI was greater in the celecoxib arm (versus placebo) in a mixed-effects analysis (P = 0.0006), and celecoxib significantly decreased Ki-67 LI by an average of 34%, whereas placebo increased Ki-67 LI by an average of 3.8% (P = 0.04; t test). In participants who crossed over to the other study arm at 6 months (all of whom had received 6 months of celecoxib at the end of a 12 months treatment period), the decreases in Ki-67 LI correlated with a reduction and/or resolution of lung nodules on computed tomography. Celecoxib significantly reduced plasma c-reactive protein and interleukin-6 mRNA and protein and increased 15(S)-hydroxy-eicosatetraenoic acid levels in bronchoalveolar lavage (BAL) samples. The baseline ratio of COX-2 to 15-hydroxyprostaglandin dehydrogenase mRNA in BAL cells was a significant predictive marker of Ki-67 response to celecoxib (P = 0.002). Our collective findings support the continued investigation of celecoxib for lung cancer chemoprevention in former smokers at a low risk of cardiovascular disease.
Collapse
Affiliation(s)
- Jenny T Mao
- Pulmonary and Critical Care Section, New Mexico VA Health Care System/University of New Mexico, Albuquerque, New Mexico 87108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gomperts BN, Spira A, Massion PP, Walser TC, Wistuba II, Minna JD, Dubinett SM. Evolving concepts in lung carcinogenesis. Semin Respir Crit Care Med 2011; 32:32-43. [PMID: 21500122 DOI: 10.1055/s-0031-1272867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lung carcinogenesis is a complex, stepwise process that involves the acquisition of genetic mutations and epigenetic changes that alter cellular processes, such as proliferation, differentiation, invasion, and metastasis. Here, we review some of the latest concepts in the pathogenesis of lung cancer and highlight the roles of inflammation, the "field of cancerization," and lung cancer stem cells in the initiation of the disease. Furthermore, we review how high throughput genomics, transcriptomics, epigenomics, and proteomics are advancing the study of lung carcinogenesis. Finally, we reflect on the potential of current in vitro and in vivo models of lung carcinogenesis to advance the field and on the areas of investigation where major breakthroughs will lead to the identification of novel chemoprevention strategies and therapies for lung cancer.
Collapse
Affiliation(s)
- Brigitte N Gomperts
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mao JT, Nie WX, Tsu IH, Jin YS, Rao JY, Lu QY, Zhang ZF, Go VLW, Serio KJ. White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases. Cancer Prev Res (Phila) 2010; 3:1132-40. [PMID: 20668019 DOI: 10.1158/1940-6207.capr-09-0264] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in non-small cell lung cancer cell lines A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for WTE-induced apoptosis, including the induction of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and the 15-lipoxygenase (15-LOX) signaling pathways. We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-gamma with GW9662 partially reversed WTE-induced apoptosis. We further show that WTE increased PPAR-gamma activation and mRNA expression, concomitantly increased 15(S)-hydroxy-eicosatetraenoic acid release, and upregulated 15-LOX-1 and 15-LOX-2 mRNA expression by A549 cells. Inhibition of 15-LOX with nordihydroguaiaretic acid (NGDA), as well as caffeic acid, abrogated WTE-induced PPAR-gamma activation and upregulation of PPAR-gamma mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A mRNA expression and activated caspase-3. Inhibition of caspase-3 abrogated WTE-induced apoptosis. Our findings indicate that WTE is capable of inducing apoptosis in non-small cell lung cancer cell lines. The induction of apoptosis seems to be mediated, in part, through the upregulation of the PPAR-gamma and 15-LOX signaling pathways, with enhanced activation of caspase-3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer.
Collapse
Affiliation(s)
- Jenny T Mao
- Pulmonary and Critical Care Section, New Mexico VA Health Care System, Albuquerque, NM 87108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Peled N, Keith RL, Hirsch FR. Lung Cancer Prevention. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Walser TC, Yanagawa J, Garon E, Lee JM, Dubinett SM. Tumor Microenvironment. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ling H, Jia X, Zhang Y, Gapter LA, Lim YS, Agarwal R, Ng KY. Pachymic acid inhibits cell growth and modulates arachidonic acid metabolism in nonsmall cell lung cancer A549 cells. Mol Carcinog 2009; 49:271-82. [PMID: 19918789 DOI: 10.1002/mc.20597] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui Ling
- Department of Pharmacy, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to common malignancies other than lung. Despite previous studies in lung cancer chemoprevention failing to identify effective agents, our ability to determine higher risk populations and the understanding of lung tumor and pre-malignant biology continues to advance. Additional biomarkers of risk continue to be investigated and validated. The World Health Organization/International Association for the Study of Lung Cancer classification for lung cancer now recognizes distinct histologic lesions that can be reproducibly graded as precursors of non-small cell lung cancer. For example, carcinogenesis in the bronchial epithelium starts with normal epithelium and progresses through hyperplasia, metaplasia, dysplasia, and carcinoma in situ to invasive squamous cell cancer. Similar precursor lesions exist for adenocarcinoma, and these pre-malignant lesions are targeted by chemopreventive agents in current and future trials. At this time, chemopreventive agents can only be recommended as part of well-designed clinical trials, and multiple trials are currently in progress and additional trials are in the planning stages. This review will discuss the principles of chemoprevention, summarize the completed trials, and discuss ongoing and potential future trials with a focus on targeted pathways.
Collapse
|
21
|
Punturieri A, Szabo E, Croxton TL, Shapiro SD, Dubinett SM. Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst 2009; 101:554-9. [PMID: 19351920 DOI: 10.1093/jnci/djp023] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) are leading causes of morbidity and mortality in the United States and worldwide. They share a common environmental risk factor in cigarette smoke exposure and a genetic predisposition represented by the incidence of these diseases in only a fraction of smokers. The presence of COPD increases the risk of lung cancer up to 4.5-fold. To investigate commonalities in disease mechanisms and perspectives for disease chemoprevention, the National Heart, Lung, and Blood Institute (NHLBI) and the National Cancer Institute (NCI) held a workshop. The participants identified four research objectives: 1) clarify common epidemiological characteristics of lung cancer and COPD; 2) identify shared genetic and epigenetic risk factors; 3) identify and validate biomarkers, molecular signatures, and imaging-derived measurements of each disease; and 4) determine common and disparate pathogenetic mechanisms. These objectives should be reached via four research approaches: 1) identify, publicize, and enable the evaluation and analysis of existing datasets and repositories of biospecimens; 2) obtain phenotypic and outcome data and biospecimens from large studies of subjects with and/or at risk for COPD and lung cancer; 3) develop and use animal and other preclinical models to investigate pathogenetic links between the diseases; and 4) conduct early-phase clinical trials of potential chemopreventive agents. To foster much needed research interactions, two final recommendations were made by the participants: 1) incorporate baseline phenotyping and outcome measures for both diseases in future longitudinal studies of each disease and 2) expand collaborative efforts between the NCI and NHLBI.
Collapse
Affiliation(s)
- Antonello Punturieri
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, 6701 Rockledge Drive, Bethesda, MD 20892-7952, USA.
| | | | | | | | | |
Collapse
|
22
|
Dubinett SM, Mao JT, Hazra S. Focusing downstream in lung cancer prevention: 15-hydroxyprostaglandin dehydrogenase. Cancer Prev Res (Phila) 2009; 1:223-5. [PMID: 19138963 DOI: 10.1158/1940-6207.capr-08-0148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Steven M Dubinett
- Division of Pulmonary and Critical Care Medicine, UCLA Lung Cancer Research Program, Johnsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095-1690, USA.
| | | | | |
Collapse
|
23
|
Abstract
Worldwide over 1 million people die due to lung cancer each year. It is estimated that cigarette smoking explains almost 90% of lung cancer risk in men and 70 to 80% in women. Clinically evident lung cancers have multiple genetic and epigenetic abnormalities. These abnormalities may result in activation of oncogenes and inactivation of tumor-suppressor genes. Chronic inflammation, which is known to promote cancer, may result both from smoking and from genetic abnormalities. These mediators in turn may be responsible for increased macrophage recruitment, delayed neutrophil clearance, and increase in reactive oxygen species (ROS). Thus, the pulmonary environment presents a unique milieu in which lung carcinogenesis proceeds in complicity with the host cellular network. The pulmonary diseases that are associated with the greatest risk for lung cancer are characterized by abundant and deregulated inflammation. Pulmonary disorders such as chronic obstructive pulmonary disease (COPD)/emphysema are characterized by profound abnormalities in inflammatory and fibrotic pathways. The cytokines and growth factors aberrantly produced in COPD and the developing tumor microenvironment have been found to have deleterious properties that simultaneously pave the way for both epithelial-mesenchymal transition (EMT) and destruction of specific host cell-mediated immune responses. Full definition of these pathways will afford the opportunity to intervene in specific inflammatory events mediating lung tumorigenesis and resistance to therapy.
Collapse
|
24
|
Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 2008; 8:229. [PMID: 18694499 PMCID: PMC2527015 DOI: 10.1186/1471-2407-8-229] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 08/11/2008] [Indexed: 01/02/2023] Open
Abstract
Background Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer. Methods Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry. Results We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers. Conclusion These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.
Collapse
Affiliation(s)
- Ellen Jorgensen
- Public Health Division, Vector Research LLC, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Perry Glauert H. Influence of Dietary Fat on the Development of Cancer. FOOD SCIENCE AND TECHNOLOGY 2008. [DOI: 10.1201/9781420046649.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Lee JM, Yanagawa J, Peebles KA, Sharma S, Mao JT, Dubinett SM. Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 2008; 66:208-17. [PMID: 18304833 DOI: 10.1016/j.critrevonc.2008.01.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 12/23/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022] Open
Abstract
Lung carcinogenesis is a complex process involving the acquisition of genetic mutations that confer cancer development and the malignant phenotype, and is critically linked to apoptosis resistance, unregulated proliferation, invasion, metastasis, and angiogenesis. Epithelial mesenchymal transition (EMT) in cancer is an unregulated process in a host environment with deregulated inflammatory response that impairs cell-mediated immunity and permits cancer progression. Given the immunosuppressive tumor environment, strategies to reverse these events by stimulating host immune responses are an important area of investigation. Cyclooxygenase 2 (COX-2) and its downstream signaling pathways are potential targets for lung cancer chemoprevention and therapy. Clinical trials are underway to evaluate COX-2 inhibitors as adjuvants to chemotherapy in patients with lung cancer and to determine efficacy in prevention of bronchogenic carcinoma. The understanding of molecular mechanisms involved in inflammation and lung carcinogenesis provide insight for new drug development that target reversible, non-mutational events in the chemoprevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Jay M Lee
- Division of Cardiothoracic Surgery, Department of Surgery, UCLA Lung Cancer Research Program, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Grossman SA, Olson J, Batchelor T, Peereboom D, Lesser G, Desideri S, Ye X, Hammour T, Supko JG. Effect of phenytoin on celecoxib pharmacokinetics in patients with glioblastoma. Neuro Oncol 2008; 10:190-8. [PMID: 18287342 DOI: 10.1215/15228517-2007-055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) expression has been linked to the prognosis, angiogenesis, and radiation sensitivity of many malignancies. Celecoxib, a selective COX-2 inhibitor, is predominantly eliminated by hepatic metabolism. This study was conducted to determine the effects of hepatic enzyme-inducing antiseizure drugs (EIASDs) on the pharmacokinetics of celecoxib. The safety of celecoxib administered with radiation for glioblastoma and the effect of the combined treatment on survival were also evaluated. Patients were stratified based on concomitant use of EIASDs. Celecoxib (400) mg was administered orally twice a day until tumor progression or dose-limiting toxicity. Standard radiation was administered without adjuvant chemotherapy. Sampling was performed to define the plasma concentration/time profile for the initial dose of celecoxib and steady-state trough concentrations. Thirty-five patients (22 +EIASD, 13 -EIASD) were enrolled. There were no significant differences in age, performance status, extent of surgery, or Mini Mental State Exam scores between the two cohorts. The treatment was well tolerated. All patients in the +EIASD arm were taking phenytoin. There were no significant differences in any celecoxib pharmacokinetic parameters between 15 +EIASD and 12 -EIASD patients. With 31 of 35 patients deceased, estimated median survival time for all patients was 12 months (+EIASD, 11.5 months; - EIASD, 16 months; p = 0.11). The pharmacokinetics of celecoxib is not significantly affected by the concomitant administration of phenytoin. Celecoxib administered during and after radiation is well tolerated. The potential difference in survival between the +EIASD and -EIASD groups deserves further evaluation.
Collapse
Affiliation(s)
- Stuart A Grossman
- NABTT CNS Consortium, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peebles KA, Lee JM, Mao JT, Hazra S, Reckamp KL, Krysan K, Dohadwala M, Heinrich EL, Walser TC, Cui X, Baratelli FE, Garon E, Sharma S, Dubinett SM. Inflammation and lung carcinogenesis: applying findings in prevention and treatment. Expert Rev Anticancer Ther 2007; 7:1405-21. [PMID: 17944566 DOI: 10.1586/14737140.7.10.1405] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung carcinogenesis is a complex process requiring the acquisition of genetic mutations that confer the malignant phenotype as well as epigenetic alterations that may be manipulated in the course of therapy. Inflammatory signals in the lung cancer microenvironment can promote apoptosis resistance, proliferation, invasion, metastasis, and secretion of proangiogenic and immunosuppressive factors. Here, we discuss several prototypical inflammatory mediators controlling the malignant phenotype in lung cancer. Investigation into the detailed molecular mechanisms underlying the tumor-promoting effects of inflammation in lung cancer has revealed novel potential drug targets. Cytokines, growth factors and small-molecule inflammatory mediators released in the developing tumor microenvironment pave the way for epithelial-mesenchymal transition, the shift from a polarized, epithelial phenotype to a highly motile mesenchymal phenotype that becomes dysregulated during tumor invasion. Inflammatory mediators within the tumor microenvironment are derived from neoplastic cells as well as stromal and inflammatory cells; thus, lung cancer develops in a host environment in which the deregulated inflammatory response promotes tumor progression. Inflammation-related metabolic and catabolic enzymes (prostaglandin E(2) synthase, prostaglandin I(2) synthase and 15-hydroxyprostaglandin dehydrogenase), cell-surface receptors (E-type prostaglandin receptors) and transcription factors (ZEB1, SNAIL, PPARs, STATs and NF-kappaB) are differentially expressed in lung cancer cells compared with normal lung epithelial cells and, thus, may contribute to tumor initiation and progression. These newly discovered molecular mechanisms in the pathogenesis of lung cancer provide novel opportunities for targeted therapy and prevention in lung cancer.
Collapse
Affiliation(s)
- Katherine A Peebles
- David Geffen School of Medicine at UCLA, Division of Pulmonary & Critical Care Medicine & Hospitalists, Department of Medicine, UCLA Lung Cancer Research Program, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schroeder CP, Kadara H, Lotan D, Woo JK, Lee HY, Hong WK, Lotan R. Involvement of mitochondrial and Akt signaling pathways in augmented apoptosis induced by a combination of low doses of celecoxib and N-(4-hydroxyphenyl) retinamide in premalignant human bronchial epithelial cells. Cancer Res 2007; 66:9762-70. [PMID: 17018636 DOI: 10.1158/0008-5472.can-05-4124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Celecoxib is being evaluated as a chemopreventive agent. However, its mechanism of action is not clear because high doses were used for in vitro studies to obtain antitumor effects. We found that celecoxib inhibited the growth of premalignant and malignant human bronchial epithelial cells with IC(50) values between 8.9 and 32.7 micromol/L, irrespective of cyclooxygenase-2 (COX-2) expression. Normal human bronchial epithelial cells were less sensitive to celecoxib. Because these concentrations were higher than those attainable in vivo (<or=5.6 micromol/L), we surmised that combining celecoxib with the synthetic retinoid N-(4-hydroxyphenyl) retinamide (4HPR) might improve its efficacy. Treatment of premalignant lung cell lines with combinations of clinically relevant concentrations of celecoxib (<or=5 micromol/L) and 4HPR (<or=0.25 micromol/L) resulted in greater growth inhibition, apoptosis induction, and suppression of colony formation than did either agent alone. This combination also decreased the levels of Bcl-2, induced the release of mitochondrial cytochrome c, activated caspase-9 and caspase-3, and induced cleavage of poly(ADP-ribose)polymerase at concentrations at which each agent alone showed no or minimal effects. Furthermore, combinations of celecoxib and 4HPR suppressed the phosphorylation levels of serine/threonine kinase Akt and its substrate glycogen synthase kinase-3beta more effectively than the single agents did. Accordingly, overexpression of constitutively active Akt protected bronchial epithelial cells from undergoing apoptosis after incubation with both celecoxib and 4HPR. These findings indicate that activation of the mitochondrial apoptosis pathway and suppression of the Akt survival pathway mediate the augmented apoptosis and suggest that this combination may be useful for lung cancer chemoprevention.
Collapse
Affiliation(s)
- Claudia P Schroeder
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Sarkar FH, Li YW. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin 2007; 28:1305-15. [PMID: 17723164 DOI: 10.1111/j.1745-7254.2007.00689.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, growing interest has been focused on the field of cancer prevention. Cancer prevention by chemopreventive agents offers significant promise for reducing the incidence and mortality of cancer. Chemopreventive agents may exert their effects either by blocking or metabolizing carcinogens or by inhibiting tumor cell growth. Another important benefit of chemopreventive agents is their nontoxic nature. Therefore, chemopreventive agents have recently been used for cancer treatment in combination with chemotherapeutics or radiotherapy, uncovering a novel strategy for cancer therapy. This strategy opens a new avenue from cancer prevention to cancer treatment. In vitro and in vivo studies have demonstrated that chemopreventive agents could enhance the antitumor activity of chemotherapeutics, improving the treatment outcome. Growing evidence has shown that chemopreventive agents potentiate the efficacy of chemotherapy and radiotherapy through the regulation of multiple signaling pathways, including Akt, NF-kappaB, c-Myc, cyclooxygenase-2, apoptosis, and others, suggesting a multitargeted nature of chemopreventive agents. However, further in-depth mechanistic studies, in vivo animal experiments, and clinical trials are needed to investigate the effects of chemopreventive agents in combination treatment of cancer with conventional cancer therapies. More potent natural and synthetic chemopreventive agents are also needed to improve the efficacy of mechanism-based and targeted therapeutic strategies against cancer, which are likely to make a significant impact on saving lives. Here, we have briefly reviewed the role of chemopreventive agents in cancer prevention, but most importantly, we have reviewed how they could be useful for cancer therapy in combination with conventional therapies.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | |
Collapse
|
31
|
Liu M, Yang SC, Sharma S, Luo J, Cui X, Peebles KA, Huang M, Sato M, Ramirez RD, Shay JW, Minna JD, Dubinett SM. EGFR signaling is required for TGF-beta 1 mediated COX-2 induction in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2007; 37:578-88. [PMID: 17600311 PMCID: PMC2048680 DOI: 10.1165/rcmb.2007-0100oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins and thromboxanes from free arachidonic acid. Increasing evidence suggests that COX-2 plays a role in tumorigenesis. A variety of stimuli induce COX-2 and it is overexpressed in many tumors, including non-small cell lung cancer (NSCLC). We studied the regulation of COX-2 expression in immortalized human bronchial epithelial cells (HBECs) by transforming growth factor-beta1 (TGF-beta1) and epidermal growth factor (EGF) because these two growth factors are present in both the pulmonary milieu of those at risk for lung cancer as well as in the tumor microenvironment. EGF significantly enhanced TGF-beta1-mediated induction of COX-2 and corresponding prostaglandin E2 (PGE2) production. TGF-beta1 and EGF induced COX-2 at the transcriptional and post-transcriptional levels. EGF receptor (EGFR) inhibition, neutralizing antibody against amphiregulin, or mitogen-activated protein kinase kinase (MEK) inhibition blocked TGF-beta1-mediated COX-2 induction. COX-2 induction by TGF-beta1 depended upon Smad3 signaling and required the activity of EGFR or its downstream mediators. Autocrine amphiregulin signaling maintains EGFR in a constitutively active state in HBECs, allowing for COX-2 induction by TGF-beta1. Thus, EGFR ligands, which are abundant in the pulmonary microenvironment of those at risk for lung cancer, potentiate and are required for COX-2 induction by TGF-beta1 in HBEC. These findings emphasize the central role of EGFR signaling in COX-2 induction by TGF-beta1 and suggest that inhibition of EGFR signaling should be investigated further for lung cancer prevention.
Collapse
Affiliation(s)
- Ming Liu
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoshida A, Sarian LO, Andrade LALA, Pignataro F, Pinto GA, Derchain SFM. Cell proliferation activity unrelated to COX-2 expression in ovarian tumors. Int J Gynecol Cancer 2007; 17:607-14. [PMID: 17504375 DOI: 10.1111/j.1525-1438.2007.00838.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to assess the expression of Cyclooxygenase-2 (COX-2) and cell proliferation activity (Ki67 expression) in benign, borderline, and malignant serous and mucinous ovarian tumors. Expression of COX-2 and Ki67 proteins were evaluated by immunohistochemistry, in paraffin-embedded sections of ovarian epithelial tumors. The study included 113 serous (67 benign, 15 borderline, and 31 malignant) and 85 mucinous (48 benign, 28 borderline, and 9 malignant) tumors, removed from women who underwent laparotomy between January 1997 and December 2003. From benign to malignant tumors, there was a progressive positive trend in COX-2 expression in both serous and mucinous tumors, more evident in mucinous ones (P < 0.001). Comparing histologic types, COX-2 expression was more prominent in serous than in mucinous benign tumors (P < 0.01), but this difference was not significant in the borderline (P= 0.11) or malignant categories (P= 0.71). There was a progressive Ki67 positivity in line with the tumor histologic gradient for both serous (P < 0.01) and mucinous lesions (P < 0.01), but this increasing expression did not correlate with COX-2 expression in the present series (P= 0.78). There was a higher COX-2 expression in serous ovarian adenomas than in mucinous ones. COX-2 positivity increases in line with the morphologic gradient, from benign to malignant in both histologic types, but it was more prominent in mucinous lesions, pointing to different oncogenic pathways related to different histologic types. A correlation between the expression of COX-2 and Ki67 was not found, suggesting that COX-2 may be required for carcinogenesis, but this pathway is not responsible for cell proliferation in ovarian tumors.
Collapse
Affiliation(s)
- A Yoshida
- Department of Obstetrics and Gynecology, Universidade Estadual de Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Lee JM, Mao JT, Krysan K, Dubinett SM. Significance of cyclooxygenase-2 in prognosis, targeted therapy and chemoprevention of NSCLC. Future Oncol 2007; 3:149-53. [PMID: 17381414 DOI: 10.2217/14796694.3.2.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Evaluation of: Tsubochi H, Nobuyuki S, Hiyama M et al.: Combined analysis of cyclooxygenase-2 expression with p53 and Ki-67 in nonsmall cell lung cancer. Ann. Thorac. Surg. 82(4), 1198–1204 (2006).The report by Tsubochi and colleagues adds to the growing evidence indicating that tumor cyclo-oxygenase (Cox)-2 has a multifaceted role in conferring the malignant phenotype of non-small-cell lung cancer (NSCLC), and provides insight into the use of markers to provide prognostic information. Cox-2 has been implicated in apoptosis resistance, angiogenesis, decreased host immunity and enhanced invasion and metastasis, and, thus, has a critical involvement in carcinogenesis. This study, as well as others, has contributed to providing an insight into opportunities for targeted therapies in NSCLC. Cox-2 is one of the novel targets being studied for lung cancer therapy and chemoprevention.
Collapse
Affiliation(s)
- Jay M Lee
- Division of Cardiothoracic Surgery, Department of Surgery, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
34
|
Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ, Szabo E, Jordan VC, Spitz MR, Mills GB, Papadimitrakopoulou VA, Lotan R, Aggarwal BB, Bresalier RS, Kim J, Arun B, Lu KH, Thomas ME, Rhodes HE, Brewer MA, Follen M, Shin DM, Parnes HL, Siegfried JM, Evans AA, Blot WJ, Chow WH, Blount PL, Maley CC, Wang KK, Lam S, Lee JJ, Dubinett SM, Engstrom PF, Meyskens FL, O'Shaughnessy J, Hawk ET, Levin B, Nelson WG, Hong WK. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer--a plan to move forward. Clin Cancer Res 2006; 12:3661-97. [PMID: 16778094 DOI: 10.1158/1078-0432.ccr-06-1104] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article reviews progress in chemopreventive drug development, especially data and concepts that are new since the 2002 AACR report on treatment and prevention of intraepithelial neoplasia. Molecular biomarker expressions involved in mechanisms of carcinogenesis and genetic progression models of intraepithelial neoplasia are discussed and analyzed for how they can inform mechanism-based, molecularly targeted drug development as well as risk stratification, cohort selection, and end-point selection for clinical trials. We outline the concept of augmenting the risk, mechanistic, and disease data from histopathologic intraepithelial neoplasia assessments with molecular biomarker data. Updates of work in 10 clinical target organ sites include new data on molecular progression, significant completed trials, new agents of interest, and promising directions for future clinical studies. This overview concludes with strategies for accelerating chemopreventive drug development, such as integrating the best science into chemopreventive strategies and regulatory policy, providing incentives for industry to accelerate preventive drugs, fostering multisector cooperation in sharing clinical samples and data, and creating public-private partnerships to foster new regulatory policies and public education.
Collapse
Affiliation(s)
- Gary J Kelloff
- National Cancer Institute, Bethesda, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|