1
|
Ortega F, Hill T, Van Deynze A, Garcia-Llanos A, Walker S. Identification of QTLs involved in destemming and fruit quality for mechanical harvesting of New Mexico pod-type green chile. FRONTIERS IN PLANT SCIENCE 2024; 15:1357986. [PMID: 39011303 PMCID: PMC11246910 DOI: 10.3389/fpls.2024.1357986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Introduction Domestic production of pepper (Capsicum spp.) is shrinking while demand within the US is growing. Lack of availability and cost of labor often present an obstacle for domestic producers both practically and economically. As a result, switching to harvesting peppers mechanically is anticipated as a key strategy to help domestic producers compete in the international market. Mechanical harvest efficiency can be improved through breeding. One important trait that mechanical harvest compatible material should have is an easy destemming trait: low force separation of the pedicel and calyx from the fruit. Methods To detect the genetic sources underlying a novel easy destemming trait for the purpose of future breeding efforts in New Mexico pod-type green chile, we performed QTL analysis on three F2:F3 populations, coming from three New Mexico pod-type varieties: 'NuMex Odyssey,' 'NuMex Iliad,' and 'NuMex Joe E. Parker,' each crossed with a parent with an easy destemming trait: MUC14. Genotyping was done through genotyping by sequencing (GBS) and phenotyping was done for destemming and fruit trait measurements. Correlations between measurements were found through the R package hmisc and QTL analysis was done through R/qtl. Results A strong relationship was seen between destemming and aspects of fruit morphology, particularly, destemming force and fruit width (Pearson's correlation coefficient r=0.75). Major QTLs for destemming and fruit size were discovered. Of these, the largest destemming force QTLs for all populations (PVE=34.5-69.9%) were on chromosome 10, and in two populations QTLs for destemming force were found on chromosome 3 (Percent Variance Explained (PVE)=10.7-18.8%). Fruit size-related QTLs in all populations colocalized in these same areas on chromosomes 3 and 10. Discussion This suggests that fruit shape may be genetically linked to destemming, and breeders interested in selecting for easy destemming pepper will also have to pay attention to fruit size and shape.
Collapse
Affiliation(s)
- Franchesca Ortega
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Allen Van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Armando Garcia-Llanos
- Seed Biotechnology Center, University of California, Davis, Davis, CA, United States
| | - Stephanie Walker
- Department of Extension Plant Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
2
|
Liu T, Dong Y, Gao S, Zhou Y, Liu D, Wang J, Liu Z, Deng Y, Li F. Identification of CaPCR1, an OFP gene likely involved in pointed versus concave fruit tip regulation in pepper (Capsicum annuum L.) using recombinant inbred lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:161. [PMID: 38874630 DOI: 10.1007/s00122-024-04675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE CaPCR1 (Capana12g002165) was a candidate gene regulating fruit concave/pointed tip shape in pepper. The concave shape of the fruit tip in pepper plants is highly susceptible to drought and low temperature stresses, resulting in the appearance of a pointed tip fruit, which affects its commercial value. However, few studies on the process of fruit tip development and regulatory genes in pepper have been reported. Herein, the developmental process of the ovary before anthesis, especially changes in the shape of the ovary tip, was studied in detail. The results showed that the final fruit tip shape was consistent with the ovary tip shape before anthesis, and a concave tip shape gradually developed. F4 recombinant inbred lines (RILs) were constructed to map the genes regulating fruit tip shape through hybridization of the LRS and SBS pepper inbred lines. CaPCR1 (Capana12g002165), an OFP (OVATE Family Protein) family gene, was located in the candidate region on chr12. Three SNPs were found in the protein coding sequence of CaPCR1 between SBS and LRS, but only one SNP led to amino acid variation. Sequence variations, including base replacements, deletions and insertions, were also detected in the gene promoter region. The relative expression level of the CaPCR1 gene was significantly greater in the concave tip ovary than in the pointed tip ovary. qRT‒PCR analysis revealed that the CaPCR1 gene was expressed mainly in the gynoecium, placenta and green fruit pericarp, which was consistent with its function in ovary and fruit development. Taken together, these results suggested that CaPCR1 is a candidate gene involved in fruit tip shape determination in pepper.
Collapse
Affiliation(s)
- Tingting Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Traditional Chinese Medicine College, Bozhou University, Bozhou, 236800, Anhui, China
| | - Yiping Dong
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shenting Gao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingjia Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenya Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
3
|
Liu F, Zhao J, Sun H, Xiong C, Sun X, Wang X, Wang Z, Jarret R, Wang J, Tang B, Xu H, Hu B, Suo H, Yang B, Ou L, Li X, Zhou S, Yang S, Liu Z, Yuan F, Pei Z, Ma Y, Dai X, Wu S, Fei Z, Zou X. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nat Commun 2023; 14:5487. [PMID: 37679363 PMCID: PMC10484947 DOI: 10.1038/s41467-023-41251-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Pepper (Capsicum spp.) is one of the earliest cultivated crops and includes five domesticated species, C. annuum var. annuum, C. chinense, C. frutescens, C. baccatum var. pendulum and C. pubescens. Here, we report a pepper graph pan-genome and a genome variation map of 500 accessions from the five domesticated Capsicum species and close wild relatives. We identify highly differentiated genomic regions among the domesticated peppers that underlie their natural variations in flowering time, characteristic flavors, and unique resistances to biotic and abiotic stresses. Domestication sweeps detected in C. annuum var. annuum and C. baccatum var. pendulum are mostly different, and the common domestication traits, including fruit size, shape and pungency, are achieved mainly through the selection of distinct genomic regions between these two cultivated species. Introgressions from C. baccatum into C. chinense and C. frutescens are detected, including those providing genetic sources for various biotic and abiotic stress tolerances.
Collapse
Affiliation(s)
- Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jiantao Zhao
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Honghe Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Cheng Xiong
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuepeng Sun
- Boyce Thompson Institute, Ithaca, NY, USA
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Xin Wang
- Boyce Thompson Institute, Ithaca, NY, USA
- Department of Vegetable Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhongyi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Robert Jarret
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bingqian Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Hao Xu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bowen Hu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Huan Suo
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Bozhi Yang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Lijun Ou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xuefeng Li
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Shudong Zhou
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Sha Yang
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha, China
| | - Zhoubing Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Fang Yuan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Zhenming Pei
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yanqing Ma
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xiongze Dai
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Xuexiao Zou
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
4
|
Silvar C, Rocha F, Barata AM. Tracing Back the History of Pepper ( Capsicum annuum) in the Iberian Peninsula from a Phenomics Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:3075. [PMID: 36432804 PMCID: PMC9699223 DOI: 10.3390/plants11223075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The Iberian Peninsula was the place where pepper (Capsicum annuum) entered Europe and dispersed to other continents but was also an important secondary center for its diversification. The current work evaluated the phenotypic diversity existing in this region and investigated how that evolved from Capsicum native areas (Mexico and Andean Region). For that purpose, the high-throughput phenotyping tool Tomato Analyzer was employed. Descriptors related to size and shape were the most distinctive among fruit types, reflecting a broad diversity for Iberian peppers. These traits likely reflected those suffering from more intensive human selections, driving the worldwide expansion of C. annuum. Iberian peppers maintained close proximity to the American accessions in terms of fruit phenomics. The highest similarities were observed for those coming from the southeastern edge of the Peninsula, while northwestern accessions displayed more significant differences. Common fruit traits (small, conical) suggested that Portuguese and Spanish landraces may have arisen from an ancient American population that entered the south of Spain and promptly migrated to the central and northern territories, giving rise to larger, elongated, and blocky pods. Such lineages would be the result of adaptations to local soil-climate factors prevailing in different biogeographic provinces.
Collapse
Affiliation(s)
- Cristina Silvar
- Grupo de Investigación en Bioloxía Evolutiva, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071 A Coruña, Spain
| | - Filomena Rocha
- Banco Portugues de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigaçao Agraria e Veterinaria (INIAV), 4700-859 Braga, Portugal
| | - Ana M. Barata
- Banco Portugues de Germoplasma Vegetal (BPGV), Instituto Nacional de Investigaçao Agraria e Veterinaria (INIAV), 4700-859 Braga, Portugal
| |
Collapse
|
5
|
Lee JH, Venkatesh J, Jo J, Jang S, Kim GW, Kim JM, Han K, Ro N, Lee HY, Kwon JK, Kim YM, Lee TH, Choi D, Van Deynze A, Hill T, Kfir N, Freiman A, Davila Olivas NH, Elkind Y, Paran I, Kang BC. High-quality chromosome-scale genomes facilitate effective identification of large structural variations in hot and sweet peppers. HORTICULTURE RESEARCH 2022; 9:uhac210. [PMID: 36467270 PMCID: PMC9715575 DOI: 10.1093/hr/uhac210] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Pepper (Capsicum annuum) is an important vegetable crop that has been subjected to intensive breeding, resulting in limited genetic diversity, especially for sweet peppers. Previous studies have reported pepper draft genome assemblies using short read sequencing, but their capture of the extent of large structural variants (SVs), such as presence-absence variants (PAVs), inversions, and copy-number variants (CNVs) in the complex pepper genome falls short. In this study, we sequenced the genomes of representative sweet and hot pepper accessions by long-read and/or linked-read methods and advanced scaffolding technologies. First, we developed a high-quality reference genome for the sweet pepper cultivar 'Dempsey' and then used the reference genome to identify SVs in 11 other pepper accessions and constructed a graph-based pan-genome for pepper. We annotated an average of 42 972 gene families in each pepper accession, defining a set of 19 662 core and 23 115 non-core gene families. The new pepper pan-genome includes informative variants, 222 159 PAVs, 12 322 CNVs, and 16 032 inversions. Pan-genome analysis revealed PAVs associated with important agricultural traits, including potyvirus resistance, fruit color, pungency, and pepper fruit orientation. Comparatively, a large number of genes are affected by PAVs, which is positively correlated with the high frequency of transposable elements (TEs), indicating TEs play a key role in shaping the genomic landscape of peppers. The datasets presented herein provide a powerful new genomic resource for genetic analysis and genome-assisted breeding for pepper improvement.
Collapse
Affiliation(s)
| | | | - Jinkwan Jo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Siyoung Jang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung-Min Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Republic of Korea
| | - Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Doil Choi
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Theresa Hill
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Nir Kfir
- NRGene, 5 Golda Meir St., Ness Ziona 7403649, Israel
| | - Aviad Freiman
- Top Seeds International Ltd. Moshav Sharona, 1523200, Israel
| | | | | | | | | |
Collapse
|
6
|
Esposito S, Aiese Cigliano R, Cardi T, Tripodi P. Whole-genome resequencing reveals genomic footprints of Italian sweet and hot pepper heirlooms giving insight into genes underlying key agronomic and qualitative traits. BMC Genom Data 2022; 23:21. [PMID: 35337259 PMCID: PMC8957157 DOI: 10.1186/s12863-022-01039-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pepper is a major crop species of the Solanaceae family, largely appreciated for its high nutritional and healthy contribution to human diets. In the Mediterranean basin, the favorable pedoclimatic conditions enhanced the selection of several diversified landraces cultivated pepper (Capsicum annuum), for whom Italy can be considered a main pole of diversification. Hence, a survey of traditional C. annuum genetic resources is essential for deep understanding of such diversity and for applications in genomics assisted breeding. Here, we report whole-genome resequencing analyses of two sweet and two pungent genotypes highly diffused in South Italy and representative of the variability for shape, colour and nutritional properties. RESULTS The four genomes were reconstructed at a chromosomal scale using a reference-guided approach, based on a dataset of 2.6 billion paired-end reads, corresponding to 20× genome coverage and a mapping rate above 99% for a final genomes size of approximately 3 Gb. After five iterations of variant calling, a total of 29,258,818 single nucleotide polymorphisms (SNPs) and 1,879,112 InDels, were identified. Substantial differences were observed among the four genomes based on geographical origin, with chromosomes 9 and 11 showing more polymorphisms in the accessions with higher fruit weight and absence of pungency. Among the identified variants, a small private indel (T - > TA) shared between sweet and big fruits accessions induces a frameshift with the generation of a new stop codon in a gene annotated as extensin, whereas two private SNPs within hot types were identified in 1-aminocyclopropane-1-carboxylate oxidase (ACO), a key gene involved in fruit ripening. The estimation of repetitive elements highlights a preponderant presence of Long Terminal Repeats (LTRs), the majority of which belonged to Gypsy superfamily. By comparing the four genomes with publicly available references including 'CM334' and Zunla-1 highlight the presence of 49,475 shared gene families. CONCLUSIONS The new genomic sequences aim to enrich the whole genome information of pepper local varieties, providing a valuable tool for precision gene mapping, marker discovery, comparative studies. Such knowledge widens the frontiers to understand the selection history of Italian pepper landraces toward the recognition of specificity local agri-food products marks.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Cereal and Industrial Crops, S.S. 673, km 25.200, 71122, Foggia, Italy
| | | | - Teodoro Cardi
- CNR-IBBR, Institute of Biosciences and Bioresources, via Università 133, 80055, Portici, Italy
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Via dei Cavalleggeri 25, 84098, Pontecagnano Faiano, SA, Italy.
| |
Collapse
|
7
|
Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. Pepper Fruit Elongation Is Controlled by Capsicum annuum Ovate Family Protein 20. FRONTIERS IN PLANT SCIENCE 2022; 12:815589. [PMID: 35058962 PMCID: PMC8763684 DOI: 10.3389/fpls.2021.815589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 05/28/2023]
Abstract
Fruit shape is one of the most important quality traits of pepper (Capsicum spp.) and is used as a major attribute for the classification of fruit types. Wide natural variation in fruit shape exists among the major cultivated species Capsicum annuum, allowing the identification of several QTLs controlling the trait. However, to date, no genes underlying fruit shape QTLs have been conclusively identified, nor has their function been verified in pepper. We constructed a mapping population from a cross of round- and elongated-fruited C. annuum parents and identified a single major QTL on chromosome 10, termed fs10, explaining 68 and 70% of the phenotypic variation for fruit shape index and for distal fruit end angle, respectively. The QTL was mapped in several generations and was localized to a 5 Mbp region containing the ortholog of SlOFP20 that suppresses fruit elongation in tomato. Virus-induced gene silencing of the pepper ortholog CaOFP20 resulted in increased fruit elongation on two independent backgrounds. Furthermore, CaOFP20 exhibited differential expression in fs10 near-isogenic lines, as well as in an association panel of elongated- and round-fruited accessions. A 42-bp deletion in the upstream region of CaOFP20 was most strongly associated with fruit shape variation within the locus. Histological observations in ovaries and fruit pericarps indicated that fs10 exerts its effect on fruit elongation by controlling cell expansion and replication. Our results indicate that CaOFP20 functions as a suppressor of fruit elongation in C. annuum and is the most likely candidate gene underlying fs10.
Collapse
|
8
|
Whole genome resequencing of four Italian sweet pepper landraces provides insights on sequence variation in genes of agronomic value. Sci Rep 2020; 10:9189. [PMID: 32514106 PMCID: PMC7280500 DOI: 10.1038/s41598-020-66053-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Sweet pepper (Capsicum annuum L.) is a high value crop and one of the most widely grown vegetables belonging to the Solanaceae family. In addition to commercial varieties and F1 hybrids, a multitude of landraces are grown, whose genetic combination is the result of hundreds of years of random, environmental, and farmer selection. High genetic diversity exists in the landrace gene pool which however has scarcely been studied, thus bounding their cultivation. We re-sequenced four pepper inbred lines, within as many Italian landraces, which representative of as many fruit types: big sized blocky with sunken apex ('Quadrato') and protruding apex or heart shaped ('Cuneo'), elongated ('Corno') and smaller sized sub-spherical ('Tumaticot'). Each genomic sequence was obtained through Illumina platform at coverage ranging from 39 to 44×, and reconstructed at a chromosome scale. About 35.5k genes were predicted in each inbred line, of which 22,017 were shared among them and the reference genome (accession 'CM334'). Distinctive variations in miRNAs, resistance gene analogues (RGAs) and susceptibility genes (S-genes) were detected. A detailed survey of the SNP/Indels occurring in genes affecting fruit size, shape and quality identified the highest frequencies of variation in regulatory regions. Many structural variations were identified as presence/absence variations (PAVs), notably in resistance gene analogues (RGAs) and in the capsanthin/capsorubin synthase (CCS) gene. The large allelic diversity observed in the four inbred lines suggests their potential use as a pre-breeding resource and represents a one-stop resource for C. annuum genomics and a key tool for dissecting the path from sequence variation to phenotype.
Collapse
|
9
|
Hong JP, Ro N, Lee HY, Kim GW, Kwon JK, Yamamoto E, Kang BC. Genomic Selection for Prediction of Fruit-Related Traits in Pepper ( Capsicum spp.). FRONTIERS IN PLANT SCIENCE 2020; 11:570871. [PMID: 33193503 PMCID: PMC7655793 DOI: 10.3389/fpls.2020.570871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/24/2020] [Indexed: 05/09/2023]
Abstract
Pepper (Capsicum spp.) fruit-related traits are critical determinants of quality. These traits are controlled by quantitatively inherited genes for which marker-assisted selection (MAS) has proven insufficiently effective. Here, we evaluated the potential of genomic selection, in which genotype and phenotype data for a training population are used to predict phenotypes of a test population with only genotype data, for predicting fruit-related traits in pepper. We measured five fruit traits (fruit length, fruit shape, fruit width, fruit weight, and pericarp thickness) in 351 accessions from the pepper core collection, including 229 Capsicum annuum, 48 Capsicum baccatum, 48 Capsicum chinense, 25 Capsicum frutescens, and 1 Capsicum chacoense in 4 years at two different locations and genotyped these accessions using genotyping-by-sequencing. Among the whole core collection, considering its genetic distance and sexual incompatibility, we only included 302 C. annum complex (229 C. annuum, 48 C. chinense, and 25 C. frutescens) into further analysis. We used phenotypic and genotypic data to investigate genomic prediction models, marker density, and effects of population structure. Among 10 genomic prediction methods tested, Reproducing Kernel Hilbert Space (RKHS) produced the highest prediction accuracies (measured as correlation between predicted values and observed values) across the traits, with accuracies of 0.75, 0.73, 0.84, 0.83, and 0.82 for fruit length, fruit shape, fruit width, fruit weight, and pericarp thickness, respectively. Overall, prediction accuracies were positively correlated with the number of markers for fruit traits. We tested our genomic selection models in a separate population of recombinant inbred lines derived from two parental lines from the core collection. Despite the large difference in genetic diversity between the training population and the test population, we obtained moderate prediction accuracies of 0.32, 0.34, 0.50, and 0.48 for fruit length, fruit shape, fruit width, and fruit weight, respectively. This use of genomic selection for fruit-related traits demonstrates the potential use of core collections and genomic selection as tools for crop improvement.
Collapse
Affiliation(s)
- Ju-Pyo Hong
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hea-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Geon Woo Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Tokyo, Japan
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
10
|
Lee HY, Ro NY, Patil A, Lee JH, Kwon JK, Kang BC. Uncovering Candidate Genes Controlling Major Fruit-Related Traits in Pepper via Genotype-by-Sequencing Based QTL Mapping and Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2020; 11:1100. [PMID: 32793261 PMCID: PMC7390901 DOI: 10.3389/fpls.2020.01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/03/2020] [Indexed: 05/09/2023]
Abstract
All modern pepper accessions are products of the domestication of wild Capsicum species. However, due to the limited availability of genome-wide association study (GWAS) data and selection signatures for various traits, domestication-related genes have not been identified in pepper. Here, to address this problem, we obtained data for major fruit-related domestication traits (fruit length, width, weight, pericarp thickness, and fruit position) using a highly diverse panel of 351 pepper accessions representing the worldwide Capsicum germplasm. Using a genotype-by-sequencing (GBS) method, we developed 187,966 genome-wide high-quality SNP markers across 230 C. annuum accessions. Linkage disequilibrium (LD) analysis revealed that the average length of the LD blocks was 149 kb. Using GWAS, we identified 111 genes that were linked to 64 significant LD blocks. We cross-validated the GWAS results using 17 fruit-related QTLs and identified 16 causal genes thought to be associated with fruit morphology-related domestication traits, with molecular functions such as cell division and expansion. The significant LD blocks and candidate genes identified in this study provide unique molecular footprints for deciphering the domestication history of Capsicum. Further functional validation of these candidate genes should accelerate the cloning of genes for major fruit-related traits in pepper.
Collapse
Affiliation(s)
- Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Na-Young Ro
- National Academy of Agricultural Science, National Agrobiodiversity Center, Rural Development Administration, Jeonju, South Korea
| | - Abhinandan Patil
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute and Vegetable Breeding Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Byoung-Cheorl Kang,
| |
Collapse
|
11
|
Du H, Yang J, Chen B, Zhang X, Zhang J, Yang K, Geng S, Wen C. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC PLANT BIOLOGY 2019; 19:578. [PMID: 31870303 PMCID: PMC6929450 DOI: 10.1186/s12870-019-2122-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/07/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The widely cultivated pepper (Capsicum spp.) is one of the most diverse vegetables; however, little research has focused on characterizing the genetic diversity and relatedness of commercial varieties grown in China. In this study, a panel of 92 perfect single-nucleotide polymorphisms (SNPs) was identified using re-sequencing data from 35 different C. annuum lines. Based on this panel, a Target SNP-seq genotyping method was designed, which combined multiplex amplification of perfect SNPs with Illumina sequencing, to detect polymorphisms across 271 commercial pepper varieties. RESULTS The perfect SNPs panel had a high discriminating capacity due to the average value of polymorphism information content, observed heterozygosity, expected heterozygosity, and minor allele frequency, which were 0.31, 0.28, 0.4, and 0.31, respectively. Notably, the studied pepper varieties were morphologically categorized based on fruit shape as blocky-, long horn-, short horn-, and linear-fruited. The long horn-fruited population exhibited the most genetic diversity followed by the short horn-, linear-, and blocky-fruited populations. A set of 35 core SNPs were then used as kompetitive allele-specific PCR (KASPar) markers, another robust genotyping technique for variety identification. Analysis of genetic relatedness using principal component analysis and phylogenetic tree construction indicated that the four fruit shape populations clustered separately with limited overlaps. Based on STRUCTURE clustering, it was possible to divide the varieties into five subpopulations, which correlated with fruit shape. Further, the subpopulations were statistically different according to a randomization test and Fst statistics. Nine loci, located on chromosomes 1, 2, 3, 4, 6, and 12, were identified to be significantly associated with the fruit shape index (p < 0.0001). CONCLUSIONS Target SNP-seq developed in this study appears as an efficient power tool to detect the genetic diversity, population relatedness and molecular breeding in pepper. Moreover, this study demonstrates that the genetic structure of Chinese pepper varieties is significantly influenced by breeding programs focused on fruit shape.
Collapse
Affiliation(s)
- Heshan Du
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Bin Chen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Xiaofen Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Kun Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sansheng Geng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China.
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing, 100097, China.
| |
Collapse
|
12
|
Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746k polymorphic sites. Sci Rep 2019; 9:10067. [PMID: 31296904 PMCID: PMC6624249 DOI: 10.1038/s41598-019-46136-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
Capsicum is one of the major vegetable crops grown worldwide. Current subdivision in clades and species is based on morphological traits and coarse sets of genetic markers. Broad variability of fruits has been driven by breeding programs and has been mainly studied by linkage analysis. We discovered 746k variable sites by sequencing 1.8% of the genome in a collection of 373 accessions belonging to 11 Capsicum species from 51 countries. We describe genomic variation at population-level, confirm major subdivision in clades and species, and show that the known major subdivision of C. annuum separates large and bulky fruits from small ones. In C. annuum, we identify four novel loci associated with phenotypes determining the fruit shape, including a non-synonymous mutation in the gene Longifolia 1-like (CA03g16080). Our collection covers all the economically important species of Capsicum widely used in breeding programs and represent the widest and largest study so far in terms of the number of species and number of genetic variants analyzed. We identified a large set of markers that can be used for population genetic studies and genetic association analyses. Our results provide a comprehensive and precise perspective on genomic variability in Capsicum at population-level and suggest that future fine genetic association studies will yield useful results for breeding.
Collapse
|
13
|
Jiang Y, Li C, Takeda F, Kramer EA, Ashrafi H, Hunter J. 3D point cloud data to quantitatively characterize size and shape of shrub crops. HORTICULTURE RESEARCH 2019; 6:43. [PMID: 30962936 PMCID: PMC6441659 DOI: 10.1038/s41438-019-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/23/2018] [Accepted: 01/05/2019] [Indexed: 05/06/2023]
Abstract
Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve λ and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (R 2 = 0.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (R 2 = 0.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve λ, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management.
Collapse
Affiliation(s)
- Yu Jiang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602 USA
| | - Changying Li
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602 USA
| | - Fumiomi Takeda
- Appalachian Fruit Research Station, United States Department of Agriculture-Agricultural Research Service, Kearneysville, WV 25430 USA
| | - Elizabeth A. Kramer
- Department of Agricultural and Applied Economics, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, GA 30602 USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Jamal Hunter
- Department of Entomology, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
14
|
Park M, Lee JH, Han K, Jang S, Han J, Lim JH, Jung JW, Kang BC. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:515-529. [PMID: 30426173 DOI: 10.1007/s00122-018-3238-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/09/2018] [Indexed: 05/09/2023]
Abstract
A major QTL and candidate genes controlling capsaicinoid content in the pericarp were identified by QTL-seq and RNA-seq in Capsicum chinense. Capsaicinoid biosynthesis was previously thought to be restricted to the placental tissue; however, the recent discovery of their biosynthesis in the pericarp provides new opportunities to increase the capsaicinoid content in pepper fruits. Currently, the genetic mechanisms regulating capsaicinoid biosynthesis in the pericarp remain unknown. Here, we performed quantitative trait loci (QTL) mapping and RNA sequencing (RNA-seq) to reveal the genes controlling capsaicinoid biosynthesis in the pericarp. A whole-genome sequencing-based QTL-seq strategy was employed, identifying a major QTL on chromosome 6. To validate the QTL on chromosome 6, we performed traditional QTL mapping using the same population in QTL-seq with an additional biparental population. A total of 15 QTLs for capsaicinoid content distributed on chromosomes 3, 6, and 11 were newly identified. Among these QTLs, the genetic loci on the lower arm of chromosome 6 were commonly detected in the two mapping populations, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. Our RNA-seq analysis identified candidate genes within the common QTL that were differentially expressed in the pungent and non-pungent pericarp tissues. Our results are expected to contribute to the elucidation of the regulation of capsaicinoid biosynthesis. We also demonstrated that a combination of QTL mapping and RNA-seq is helpful for refining the candidate genes of a complicated trait of interest.
Collapse
Affiliation(s)
- Minjeong Park
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joung-Ho Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Siyoung Jang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jiwoong Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jung-Hyun Lim
- Research Institute of Biotechnology, CJ CheilJedang Corp., Suwon, 16495, Republic of Korea
| | - Ji-Won Jung
- Research Institute of Biotechnology, CJ CheilJedang Corp., Suwon, 16495, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
15
|
Zhu Z, Sun B, Wei J, Cai W, Huang Z, Chen C, Cao B, Chen G, Lei J. Construction of a high density genetic map of an interspecific cross of Capsicum chinense and Capsicum annuum and QTL analysis of floral traits. Sci Rep 2019; 9:1054. [PMID: 30705330 PMCID: PMC6355862 DOI: 10.1038/s41598-018-38370-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/27/2018] [Indexed: 11/09/2022] Open
Abstract
The yield of pepper plants (Capsicum spp.) is their most important trait and is affected by the flower number and flowering time. Capsicum annuum produces a single flower per node and has an early flowering habit. By contrast, Capsicum chinense yields multiple flowers per node and has a late flowering character. However, the genetic mechanism underlying the control of these floral traits remains largely unknown. In this study, 150 F2 populations from an interspecific cross between the inbred lines 740 (C. chinense) and CA1 (C. annuum) and their parents were used to construct a molecular genetic linkage map using the specific length amplified fragment sequencing (SLAF-seq) technique. This linkage map, spanning 1,586.78 cM in length, contained 9,038 markers on 12 chromosomes, with a mean marker distance of 0.18 cM. Phenotypic data on the flowering time and flower number per node were collected over multiple years, and QTL analysis identified 6 QTLs for the flowering time and flower number per node by composite interval mapping (CIM) and genome-wide composite interval mapping (GCIM) methods at least in two environments. The candidate genes within the major QTL were predicted. In the major flowering time QTL, the candidate gene Capana02g000700, which encodes the homeotic protein APETALA2, was identified. Quantitative reverse-transcription PCR (qRT-PCR) analysis indicated that its expression level in 740 was higher than that in CA1. Gene expression analysis indicated that the expression of Capana02g000700 was significantly upregulated in flowers, and many floral development-related genes were found to be coexpressed with Capana02g000700, supporting the function of this gene in association with flowering time in C. chinense and C. annuum species.
Collapse
Affiliation(s)
- Zhangsheng Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binmei Sun
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianlang Wei
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Cai
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhubin Huang
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Changming Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoju Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jianjun Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm innovation in South China, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Pereira-Dias L, Vilanova S, Fita A, Prohens J, Rodríguez-Burruezo A. Genetic diversity, population structure, and relationships in a collection of pepper ( Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). HORTICULTURE RESEARCH 2019; 6:54. [PMID: 31044080 PMCID: PMC6491490 DOI: 10.1038/s41438-019-0132-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 05/03/2023]
Abstract
Pepper (Capsicum spp.) is one of the most important vegetable crops; however, pepper genomic studies lag behind those of other important Solanaceae. Here we present the results of a high-throughput genotyping-by-sequencing (GBS) study of a collection of 190 Capsicum spp. accessions, including 183 of five cultivated species (C. annuum, C. chinense, C. frutescens, C. baccatum, and C. pubescens) and seven of the wild form C. annuum var. glabriusculum. Sequencing generated 6,766,231 high-quality read tags, of which 40.7% were successfully aligned to the reference genome. SNP calling yielded 4083 highly informative segregating SNPs. Genetic diversity and relationships of a subset of 148 accessions, of which a complete passport information was available, was studied using principal components analysis (PCA), discriminant analysis of principal components (DAPC), and phylogeny approaches. C. annuum, C. baccatum, and C. chinense were successfully separated by all methods. Our population was divided into seven clusters by DAPC, where C. frutescens accessions were clustered together with C. chinense. C. annuum var. glabriusculum accessions were spread into two distinct genetic pools, while European accessions were admixed and closely related. Separation of accessions was mainly associated to differences in fruit characteristics and origin. Phylogeny studies showed a close relation between Spanish and Mexican accessions, supporting the hypothesis that the first arose from a main genetic flow from the latter. Tajima's D statistic values were consistent with positive selection in the C. annuum clusters, possibly related to domestication or selection towards traits of interest. This work provides comprehensive and relevant information on the origin and relationships of Spanish landraces and for future association mapping studies in pepper.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
17
|
Taitano N, Bernau V, Jardón‐Barbolla L, Leckie B, Mazourek M, Mercer K, McHale L, Michel A, Baumler D, Kantar M, van der Knaap E. Genome-wide genotyping of a novel Mexican Chile Pepper collection illuminates the history of landrace differentiation after Capsicum annuum L. domestication. Evol Appl 2019; 12:78-92. [PMID: 30622637 PMCID: PMC6304684 DOI: 10.1111/eva.12651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/17/2018] [Indexed: 11/27/2022] Open
Abstract
Studies of genetic diversity among phenotypically distinct crop landraces improve our understanding of fruit evolution and genome structure under domestication. Chile peppers (Capsicum spp. L.) are economically valuable and culturally important species, and extensive phenotypic variation among landraces exists in southern Mexico, a center of C. annuum diversity. We collected 103 chile pepper seed accessions from 22 named landraces across 27 locations in southern Mexico. We genotyped these accessions with genotyping by sequencing (GBS), yielding 32,623 filtered single-nucleotide polymorphisms. Afterward, we genotyped 32 additional C. annuum accessions from a global collection for comparison to the Mexican collection. Within the Mexican collection, genetic assignment analyses showed clear genetic differentiation between landraces and clarified the unique nature of the Tusta landrace. Further clustering analyses indicated that the largest fresh-use Chile de Agua and dry-use Costeño landraces were part of separate clades, indicating that these two landraces likely represent distinct populations. The global accessions showed considerable admixture and limited clustering, which may be due to the collapse of use-type divisions outside of Central America. The separation of the Mexican landraces in part by fruit morphology related to use highlights the relevance of this use-type morphological diversity for plant breeders and the utility of fruit development variation for evolutionary biologists.
Collapse
Affiliation(s)
- Nathan Taitano
- Institute for Plant Breeding, Genetics & GenomicsUniversity of GeorgiaAthensGeorgia
- Department of Horticulture and Crop ScienceOhio State UniversityWoosterOhio
| | - Vivian Bernau
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhio
| | - Lev Jardón‐Barbolla
- Center of Interdisciplinary Research in Sciences and HumanitiesUniversidad Nacional Autónoma de MéxicoMexico CityMéxico
| | - Brian Leckie
- Section of Plant Breeding and GeneticsCornell UniversityIthacaNew York
- Present address:
School of AgricultureTennessee Technological UniversityCookevilleTennessee
| | - Michael Mazourek
- Section of Plant Breeding and GeneticsCornell UniversityIthacaNew York
| | - Kristin Mercer
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhio
| | - Leah McHale
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhio
| | - Andrew Michel
- Department of EntomologyOhio State UniversityWoosterOhio
| | - David Baumler
- Department of Food Science and NutritionUniversity of MinnesotaMinneapolisMinnesota
| | - Michael Kantar
- Department of Tropical Plant and Soil SciencesUniversity of Hawai'iHonoluluHawaii
| | - Esther van der Knaap
- Institute for Plant Breeding, Genetics & GenomicsUniversity of GeorgiaAthensGeorgia
- Department of Horticulture and Crop ScienceOhio State UniversityWoosterOhio
- Department of HorticultureUniversity of GeorgiaAthensGeorgia
| |
Collapse
|
18
|
Tripodi P, Greco B. Large Scale Phenotyping Provides Insight into the Diversity of Vegetative and Reproductive Organs in a Wide Collection of Wild and Domesticated Peppers ( Capsicum spp.). PLANTS 2018; 7:plants7040103. [PMID: 30463212 PMCID: PMC6313902 DOI: 10.3390/plants7040103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
In the past years, the diversity of Capsicum has been mainly investigated through genetics and genomics approaches, fewer efforts have been made in the field of plant phenomics. Assessment of crop traits with high-throughput methodologies could enhance the knowledge of the plant phenome, giving at the same time a key contribution to the understanding of the function of many genes. In this study, a wide germplasm collection of 307 accessions retrieved from 48 world regions, and belonging to nine Capsicum species was characterized for 54 plant, leaf, flower and fruit traits. Conventional descriptors and semi-automated tools based on image analysis and colour coordinate detection were used. Significant differences were found among accessions, between species and between sweet and spicy cultivated types, revealing a large diversity. The results highlighted how the domestication process and the continued selection have increased the variability of fruit shape and colour. Hierarchical clustering based on conventional and fruit morphological descriptors reflected the separation of species on the basis of their phylogenetic relationships. These observations suggested that the flow between distinct gene pools could have contributed to determine the similarity of the species on the basis of morphological plant and fruit parameters. The approach used represents the first high-throughput phenotyping effort in Capsicum spp. aimed at broadening the knowledge of the diversity of domesticated and wild peppers. The data could help to select best the candidates for breeding and provide new insight into the understanding of the genetic base of the fruit shape of pepper.
Collapse
Affiliation(s)
- Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, CREA, 84098 Pontecagnano Faiano, Italy.
| | - Barbara Greco
- Research Centre for Vegetable and Ornamental Crops, CREA, 84098 Pontecagnano Faiano, Italy.
| |
Collapse
|
19
|
Chunthawodtiporn J, Hill T, Stoffel K, Van Deynze A. Quantitative Trait Loci Controlling Fruit Size and Other Horticultural Traits in Bell Pepper ( Capsicum annuum). THE PLANT GENOME 2018; 11. [PMID: 29505638 DOI: 10.3835/plantgenome2016.12.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bell pepper ( L.) is a group of fruit vegetables that has large variation in fruit shape, fruit size, and horticultural traits. Using unadapted sources of germplasm to bring in novel alleles while maintaining favorable quality and horticultural traits is challenging for breeding in pepper. A genetic map with 318 loci from genotype-by-sequencing (GBS) and single nucleotide polymorphism assays was generated from a recombinant inbred line population derived from a cultivated bell-type 'Maor' and a landrace highly resistant to , 'Criollo de Morelos-334'. Forty-nine quantitative trait loci (QTLs) were detected for fruit, leaf, and horticultural traits with the scantwo permutation and stepwiseqtl methods from R/qtl. With the availability of a pepper reference genome and GBS data, candidate genes for pepper organ size and other horticultural traits were predicted. , , and genes were candidate genes for controlling organ sizes on chromosome 1, 2, and 3, respectively. Two candidate genes controlling trichome formation in pepper are located at chromosome 10: and . The locus on chromosome 10, which encodes a member of the R2R3 MYB-domain family of proteins, has a function in anthocyanin accumulation. These QTL results and the candidate genes for each trait emphasize the genetic basis of the important traits for breeding with unadapted parents in bell pepper.
Collapse
|