1
|
Cao Z, Aharonian F, Axikegu, Bai Y, Bao Y, Bastieri D, Bi X, Bi Y, Bian W, Bukevich A, Cao Q, Cao W, Cao Z, Chang J, Chang J, Chen A, Chen E, Chen H, Chen L, Chen L, Chen L, Chen M, Chen M, Chen Q, Chen S, Chen S, Chen S, Chen T, Chen Y, Cheng N, Cheng Y, Cui M, Cui S, Cui X, Cui Y, Dai B, Dai H, Dai Z, Danzengluobu, Dong X, Duan K, Fan J, Fan Y, Fang J, Fang J, Fang K, Feng C, Feng H, Feng L, Feng S, Feng X, Feng Y, Feng Y, Gabici S, Gao B, Gao C, Gao Q, Gao W, Gao W, Ge M, Geng L, Giacinti G, Gong G, Gou Q, Gu M, Guo F, Guo X, Guo Y, Guo Y, Han Y, Hasan M, He H, He H, He J, He Y, Hor Y, Hou B, Hou C, Hou X, Hu H, Hu Q, Hu S, Huang D, Huang T, Huang W, Huang X, Huang X, Huang Y, Ji X, Jia H, Jia K, Jiang K, Jiang X, Jiang Z, Jin M, Kang M, Karpikov I, Kuleshov D, Kurinov K, Li B, Li C, Li C, Li C, Li D, Li F, Li H, Li H, Li J, Li J, Li K, Li S, Li W, Li W, Li X, Li X, Li Y, Li Z, Li Z, Liang E, Liang Y, Lin S, Liu B, Liu C, Liu D, Liu D, Liu H, Liu H, Liu J, Liu J, Liu M, Liu R, Liu S, Liu W, Liu Y, Liu Y, Luo Q, Luo Y, Lv H, Ma B, Ma L, Ma X, Mao J, Min Z, Mitthumsiri W, Mu H, Nan Y, Neronov A, Ou L, Pattarakijwanich P, Pei Z, Qi J, Qi M, Qiao B, Qin J, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng X, Shu F, Song H, Stenkin Y, Stepanov V, Su Y, Sun D, Sun Q, Sun X, Sun Z, Takata J, Tam P, Tang Q, Tang R, Tang Z, Tian W, Wang C, Wang C, Wang G, Wang H, Wang H, Wang J, Wang K, Wang K, Wang L, Wang L, Wang P, Wang R, Wang W, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Wang Z, Wei D, Wei J, Wei Y, Wen T, Wu C, Wu H, Wu Q, Wu S, Wu X, Wu Y, Xi S, Xia J, Xiang G, Xiao D, Xiao G, Xin Y, Xing Y, Xiong D, Xiong Z, Xu D, Xu R, Xu R, Xu W, Xue L, Yan D, Yan J, Yan T, Yang C, Yang C, Yang F, Yang F, Yang L, Yang M, Yang R, Yang W, Yao Y, Yao Z, Yin L, Yin N, You X, You Z, Yu Y, Yuan Q, Yue H, Zeng H, Zeng T, Zeng W, Zha M, Zhang B, Zhang F, Zhang H, Zhang H, Zhang H, Zhang J, Zhang L, Zhang P, Zhang P, Zhang R, Zhang S, Zhang S, Zhang S, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao L, Zhao S, Zhao X, Zheng F, Zhong W, Zhou B, Zhou H, Zhou J, Zhou M, Zhou P, Zhou R, Zhou X, Zhou X, Zhu B, Zhu C, Zhu F, Zhu H, Zhu K, Zou Y, Zuo X, Celli S. Evidence for particle acceleration approaching PeV energies in the W51 complex. Sci Bull (Beijing) 2024; 69:2833-2841. [PMID: 39153903 DOI: 10.1016/j.scib.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/19/2024]
Abstract
The γ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays (CRs) accelerated by the shock of supernova remnant (SNR) W51C and the dense molecular clouds in the adjacent star-forming region, W51B. However, the maximum acceleration capability of W51C for CRs remains elusive. Based on observations conducted with the Large High Altitude Air Shower Observatory (LHAASO), we report a significant detection of γ rays emanating from the W51 complex, with energies from 2 to 200 TeV. The LHAASO measurements, for the first time, extend the γ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV. By combining the "π0-decay bump" featured data from Fermi-LAT, the broadband γ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model. The observed spectral bending feature suggests an exponential cutoff at ∼400 TeV or a power-law break at ∼200 TeV in the CR proton spectrum, most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime. Additionally, two young star clusters within W51B could also be theoretically viable to produce the most energetic γ rays observed by LHAASO. Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
Collapse
|
2
|
Real D, Calvo D, Díaz A, Salesa Greus F, Sánchez Losa A. A Narrow Optical Pulse Emitter Based on LED: NOPELED. SENSORS (BASEL, SWITZERLAND) 2022; 22:7683. [PMID: 36236781 PMCID: PMC9572929 DOI: 10.3390/s22197683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.
Collapse
Affiliation(s)
- Diego Real
- IFIC—Instituto de Física Corpuscular, CSIC—Universitat de València, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - David Calvo
- IFIC—Instituto de Física Corpuscular, CSIC—Universitat de València, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Antonio Díaz
- Department of Computer Architecture and Technology/CITIC, University of Granada, 18071 Granada, Spain
| | - Francisco Salesa Greus
- IFIC—Instituto de Física Corpuscular, CSIC—Universitat de València, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Agustín Sánchez Losa
- IFIC—Instituto de Física Corpuscular, CSIC—Universitat de València, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| |
Collapse
|
3
|
Radio Galaxies at TeV Energies. GALAXIES 2022. [DOI: 10.3390/galaxies10030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Unlike blazars, radio galaxies have jets that are misaligned relative to our line-of-sight. This misaligned geometry provides us with a unique view of both the jet and super massive black hole. To date, four radio galaxies have been detected at TeV energies with an additional two active galactic nuclei shown to exhibit both radio galaxy and BL Lac-type properties. TeV observations of radio galaxies have revealed these objects to be fascinating, displaying ultra-fast variability and often relatively hard spectral energy distributions. This work aims to provide a review of the current state of radio galaxy observations within the context of very-high-energy γ-ray astronomy, while also highlighting that radio galaxies are excellent targets for multi-wavelength observations. A number of motivations for the continued study of radio galaxies are provided, and these are discussed with a focus on the key observational results, including implications for future observations with next-generation instruments soon to be operational.
Collapse
|
4
|
TeV Instrumentation: Current and Future. GALAXIES 2022. [DOI: 10.3390/galaxies10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the last 20 years, TeV astronomy has turned from a fledgling field, with only a handful of sources, into a fully-developed astronomy discipline, broadening our knowledge on a variety of types of TeV gamma-ray sources. This progress has been mainly achieved due to the currently operating instruments: imaging atmospheric Cherenkov telescopes, surface arrays and water Cherenkov detectors. Moreover, we are at the brink of a next generation of instruments, with a considerable leap in performance parameters. This review summarizes the current status of the TeV astronomy instrumentation, mainly focusing on the comparison of the different types of instruments and analysis challenges, as well as providing an outlook into the future installations. The capabilities and limitations of different techniques of observations of TeV gamma rays are discussed, as well as synergies to other bands and messengers.
Collapse
|
5
|
Cholis I, Krommydas I. Utilizing cosmic-ray positron and electron observations to probe the averaged properties of Milky Way pulsars. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.023015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Abstract
Thirty years after the discovery of the first very-high-energy γ-ray source by the Whipple telescope, the field experienced a revolution mainly driven by the third generation of imaging atmospheric Cherenkov telescopes (IACTs). The combined use of large mirrors and the invention of the imaging technique at the Whipple telescope, stereoscopic observations, developed by the HEGRA array and the fine-grained camera, pioneered by the CAT telescope, led to a jump by a factor of more than ten in sensitivity. The advent of advanced analysis techniques led to a vast improvement in background rejection, as well as in angular and energy resolutions. Recent instruments already have to deal with a very large amount of data (petabytes), containing a large number of sources often very extended (at least within the Galactic plane) and overlapping each other, and the situation will become even more dramatic with future instruments. The first large catalogues of sources have emerged during the last decade, which required numerous, dedicated observations and developments, but also made the first population studies possible. This paper is an attempt to summarize the evolution of the field towards the building up of the source catalogues, to describe the first population studies already made possible, and to give some perspectives in the context of the upcoming, new generation of instruments.
Collapse
|
7
|
Abstract
The search for Galactic pevatrons is now a well-identified key science project of all instruments operating in the very-high-energy domain. Indeed, in this energy range, the detection of gamma rays clearly indicates that efficient particle acceleration is taking place, and observations can thus help identify which astrophysical sources can energize particles up to the ~PeV range, thus being pevatrons. In the search for the origin of Galactic cosmic rays (CRs), the PeV range is an important milestone, since the sources of Galactic CRs are expected to accelerate PeV particles. This is how the central scientific goal that is ’solving the mystery of the origin of CRs’ has often been distorted into ’finding (a) pevatron(s)’. Since supernova remnants (SNRs) are often cited as the most likely candidates for the origin of CRs, ’finding (a) pevatron(s)’ has often become ’confirming that SNRs are pevatrons’. Pleasingly, the first detection(s) of pevatron(s) were not associated to SNRs. Moreover, all clearly detected SNRs have yet revealed to not be pevatrons, and the detection from VHE gamma rays from regions unassociated with SNRs, are reminding us that other astrophysical sites might well be pevatrons. This short review aims at highlighting a few important results on the search for Galactic pevatrons.
Collapse
|
8
|
Amenomori M, Bao YW, Bi XJ, Chen D, Chen TL, Chen WY, Chen X, Chen Y, Cui SW, Ding LK, Fang JH, Fang K, Feng CF, Feng Z, Feng ZY, Gao Q, Gomi A, Gou QB, Guo YQ, Guo YY, He HH, He ZT, Hibino K, Hotta N, Hu H, Hu HB, Huang J, Jia HY, Jiang L, Jiang P, Jin HB, Kasahara K, Katayose Y, Kato C, Kato S, Kawata K, Kozai M, Kurashige D, Le GM, Li AF, Li HJ, Li WJ, Li Y, Lin YH, Liu B, Liu C, Liu JS, Liu LY, Liu MY, Liu W, Liu XL, Lou YQ, Lu H, Meng XR, Munakata K, Nakada H, Nakamura Y, Nakazawa Y, Nanjo H, Ning CC, Nishizawa M, Ohnishi M, Ohura T, Okukawa S, Ozawa S, Qian L, Qian X, Qian XL, Qu XB, Saito T, Sakata M, Sako T, Sako TK, Shao J, Shibata M, Shiomi A, Sugimoto H, Takano W, Takita M, Tan YH, Tateyama N, Torii S, Tsuchiya H, Udo S, Wang H, Wang YP, Wu HR, Wu Q, Xu JL, Xue L, Yamamoto Y, Yang Z, Yao YQ, Yin J, Yokoe Y, Yu NP, Yuan AF, Zhai LM, Zhang CP, Zhang HM, Zhang JL, Zhang X, Zhang XY, Zhang Y, Zhang Y, Zhang Y, Zhao SP, Zhou XX. Gamma-Ray Observation of the Cygnus Region in the 100-TeV Energy Region. PHYSICAL REVIEW LETTERS 2021; 127:031102. [PMID: 34328784 DOI: 10.1103/physrevlett.127.031102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We report observations of gamma-ray emissions with energies in the 100-TeV energy region from the Cygnus region in our Galaxy. Two sources are significantly detected in the directions of the Cygnus OB1 and OB2 associations. Based on their positional coincidences, we associate one with a pulsar PSR J2032+4127 and the other mainly with a pulsar wind nebula PWN G75.2+0.1, with the pulsar moving away from its original birthplace situated around the centroid of the observed gamma-ray emission. This work would stimulate further studies of particle acceleration mechanisms at these gamma-ray sources.
Collapse
Affiliation(s)
- M Amenomori
- Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan
| | - Y W Bao
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - X J Bi
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - D Chen
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - T L Chen
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - W Y Chen
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Chen
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Chen
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - S W Cui
- Department of Physics, Hebei Normal University, Shijiazhuang 050016, China
| | - L K Ding
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J H Fang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - K Fang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - C F Feng
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Zhaoyang Feng
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Z Y Feng
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - Qi Gao
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - A Gomi
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Q B Gou
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Q Guo
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Y Guo
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H H He
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Z T He
- Department of Physics, Hebei Normal University, Shijiazhuang 050016, China
| | - K Hibino
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - N Hotta
- Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Haibing Hu
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - H B Hu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J Huang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H Y Jia
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - L Jiang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - P Jiang
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - H B Jin
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - K Kasahara
- Faculty of Systems Engineering, Shibaura Institute of Technology, Omiya 330-8570, Japan
| | - Y Katayose
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - C Kato
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - S Kato
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - K Kawata
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - M Kozai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara 252-5210, Japan
| | - D Kurashige
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - G M Le
- National Center for Space Weather, China Meteorological Administration, Beijing 100081, China
| | - A F Li
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
- School of Information Science and Engineering, Shandong Agriculture University, Taian 271018, China
| | - H J Li
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - W J Li
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - Y Li
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - Y H Lin
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - B Liu
- Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - C Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J S Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - L Y Liu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - M Y Liu
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - W Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X L Liu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - Y-Q Lou
- Department of Physics and Tsinghua Centre for Astrophysics (THCA), Tsinghua University, Beijing 100084, China
- Tsinghua University-National Astronomical Observatories of China (NAOC) Joint Research Center for Astrophysics, Tsinghua University, Beijing 100084, China
- Department of Astronomy, Tsinghua University, Beijing 100084, China
| | - H Lu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X R Meng
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - K Munakata
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - H Nakada
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Y Nakamura
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - Y Nakazawa
- College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
| | - H Nanjo
- Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan
| | - C C Ning
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - M Nishizawa
- National Institute of Informatics, Tokyo 101-8430, Japan
| | - M Ohnishi
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - T Ohura
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - S Okukawa
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - S Ozawa
- National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
| | - L Qian
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - X Qian
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - X L Qian
- Department of Mechanical and Electrical Engineering, Shangdong Management University, Jinan 250357, China
| | - X B Qu
- College of Science, China University of Petroleum, Qingdao 266555, China
| | - T Saito
- Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan
| | - M Sakata
- Department of Physics, Konan University, Kobe 658-8501, Japan
| | - T Sako
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - T K Sako
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - J Shao
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - M Shibata
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - A Shiomi
- College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
| | - H Sugimoto
- Shonan Institute of Technology, Fujisawa 251-8511, Japan
| | - W Takano
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - M Takita
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - Y H Tan
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - N Tateyama
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - S Torii
- Research Institute for Science and Engineering, Waseda University, Tokyo 162-0044, Japan
| | - H Tsuchiya
- Japan Atomic Energy Agency, Tokai-mura 319-1195, Japan
| | - S Udo
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - H Wang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y P Wang
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - H R Wu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Q Wu
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - J L Xu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - L Xue
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Y Yamamoto
- Department of Physics, Konan University, Kobe 658-8501, Japan
| | - Z Yang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Q Yao
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - J Yin
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - Y Yokoe
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - N P Yu
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - A F Yuan
- Department of Mathematics and Physics, Tibet University, Lhasa 850000, China
| | - L M Zhai
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - C P Zhang
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - H M Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J L Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X Zhang
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - X Y Zhang
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Y Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China
| | - Ying Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - S P Zhao
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X X Zhou
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
9
|
Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Della Volpe D, D'Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Huang XY. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A. PHYSICAL REVIEW LETTERS 2021; 126:241103. [PMID: 34213924 DOI: 10.1103/physrevlett.126.241103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
Collapse
Affiliation(s)
- F Aharonian
- Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, 2 Dublin, Ireland
- Max-Planck-Institut for Nuclear Physics, P.O. Box 103980, 69029 Heidelberg, Germany
| | - Q An
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - L X Bai
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Y X Bai
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y W Bao
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - D Bastieri
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - X J Bi
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y J Bi
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H Cai
- School of Physics and Technology, Wuhan University, 430072 Wuhan, Hubei, China
| | - J T Cai
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - Z Cao
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Z Cao
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - J Chang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - J F Chang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - X C Chang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - B M Chen
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - J Chen
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - L Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - L Chen
- Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
| | - L Chen
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - M J Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - M L Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - Q H Chen
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - S H Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - S Z Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - T L Chen
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China
| | - X L Chen
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y Chen
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - N Cheng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y D Cheng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - S W Cui
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - X H Cui
- National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
| | - Y D Cui
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - B Z Dai
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - H L Dai
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - Z G Dai
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - D Della Volpe
- Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genève, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - B D'Ettorre Piazzoli
- Dipartimento di Fisica dell'Università di Napoli "Federico II," Complesso Universitario di Monte Sant'Angelo, via Cinthia, 80126 Napoli, Italy
| | - X J Dong
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - J H Fan
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - Y Z Fan
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - Z X Fan
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - J Fang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - K Fang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - C F Feng
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - L Feng
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - S H Feng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y L Feng
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - B Gao
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - C D Gao
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - Q Gao
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China
| | - W Gao
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - M M Ge
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - L S Geng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - Q B Gou
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - M H Gu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - J G Guo
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X L Guo
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - Y Q Guo
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y Y Guo
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - Y A Han
- School of Physics and Microelectronics, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - H H He
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H N He
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - J C He
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - S L He
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - X B He
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - Y He
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - M Heller
- Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genève, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Y K Hor
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - C Hou
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X Hou
- Yunnan Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China
| | - H B Hu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - S Hu
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - S C Hu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X J Hu
- Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - D H Huang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - Q L Huang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - W H Huang
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - X T Huang
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - Z C Huang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - F Ji
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X L Ji
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - H Y Jia
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - K Jiang
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Z J Jiang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - C Jin
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - D Kuleshov
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
| | - K Levochkin
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
| | - B B Li
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - C Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - C Li
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - F Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - H B Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H C Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H Y Li
- University of Science and Technology of China, 230026 Hefei, Anhui, China
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - J Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - K Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - W L Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - X Li
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - X Li
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - X R Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y Li
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Y Z Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Z Li
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Z Li
- School of Physics, Peking University, 100871 Beijing, China
| | - E W Liang
- School of Physical Science and Technology, Guangxi University, 530004 Nanning, Guangxi, China
| | - Y F Liang
- School of Physical Science and Technology, Guangxi University, 530004 Nanning, Guangxi, China
| | - S J Lin
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - B Liu
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - C Liu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - D Liu
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - H Liu
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - H D Liu
- School of Physics and Microelectronics, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - J Liu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - J L Liu
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - J S Liu
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - J Y Liu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - M Y Liu
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China
| | - R Y Liu
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - S M Liu
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - W Liu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y N Liu
- Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - Z X Liu
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - W J Long
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - R Lu
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - H K Lv
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - B Q Ma
- School of Physics, Peking University, 100871 Beijing, China
| | - L L Ma
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X H Ma
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - J R Mao
- Yunnan Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China
| | - A Masood
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - W Mitthumsiri
- Department of Physics, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - T Montaruli
- Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genève, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Y C Nan
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - B Y Pang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - P Pattarakijwanich
- Department of Physics, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - Z Y Pei
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - M Y Qi
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - D Ruffolo
- Department of Physics, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - V Rulev
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
| | - A Sáiz
- Department of Physics, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
| | - L Shao
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - O Shchegolev
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - X D Sheng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - J R Shi
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H C Song
- School of Physics, Peking University, 100871 Beijing, China
| | - Yu V Stenkin
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - V Stepanov
- Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
| | - Q N Sun
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - X N Sun
- School of Physical Science and Technology, Guangxi University, 530004 Nanning, Guangxi, China
| | - Z B Sun
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - P H T Tam
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - Z B Tang
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - W W Tian
- University of Chinese Academy of Sciences, 100049 Beijing, China
- National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
| | - B D Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - C Wang
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - H Wang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - H G Wang
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - J C Wang
- Yunnan Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China
| | - J S Wang
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - L P Wang
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - L Y Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - R N Wang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - W Wang
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - W Wang
- School of Physics and Technology, Wuhan University, 430072 Wuhan, Hubei, China
| | - X G Wang
- School of Physical Science and Technology, Guangxi University, 530004 Nanning, Guangxi, China
| | - X J Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X Y Wang
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - Y D Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y J Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y P Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Z Wang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - Z Wang
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Z H Wang
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Z X Wang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - D M Wei
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - J J Wei
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - Y J Wei
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - T Wen
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - C Y Wu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H R Wu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - S Wu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - W X Wu
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - X F Wu
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - S Q Xi
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - J Xia
- University of Science and Technology of China, 230026 Hefei, Anhui, China
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - J J Xia
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - G M Xiang
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
| | - G Xiao
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H B Xiao
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - G G Xin
- School of Physics and Technology, Wuhan University, 430072 Wuhan, Hubei, China
| | - Y L Xin
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - Y Xing
- Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
| | - D L Xu
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - R X Xu
- School of Physics, Peking University, 100871 Beijing, China
| | - L Xue
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - D H Yan
- Yunnan Observatories, Chinese Academy of Sciences, 650216 Kunming, Yunnan, China
| | - C W Yang
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - F F Yang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - J Y Yang
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - L L Yang
- School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, 519082 Zhuhai, Guangdong, China
| | - M J Yang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - R Z Yang
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - S B Yang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - Y H Yao
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Z G Yao
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y M Ye
- Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
| | - L Q Yin
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - N Yin
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - X H You
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Z Y You
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y H Yu
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - Q Yuan
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - H D Zeng
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - T X Zeng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - W Zeng
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - Z K Zeng
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - M Zha
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X X Zhai
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - B B Zhang
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - H M Zhang
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - H Y Zhang
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - J L Zhang
- National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
| | - J W Zhang
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - L Zhang
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - L Zhang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - L X Zhang
- Center for Astrophysics, Guangzhou University, 510006 Guangzhou, Guangdong, China
| | - P F Zhang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
| | - P P Zhang
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - R Zhang
- University of Science and Technology of China, 230026 Hefei, Anhui, China
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - S R Zhang
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - S S Zhang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X Zhang
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - X P Zhang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y Zhang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - Y Zhang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| | - Y F Zhang
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - Y L Zhang
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - B Zhao
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - J Zhao
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - L Zhao
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
- University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - L Z Zhao
- Hebei Normal University, 050024 Shijiazhuang, Hebei, China
| | - S P Zhao
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - F Zheng
- National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China
| | - Y Zheng
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - B Zhou
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - H Zhou
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - J N Zhou
- Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai, China
| | - P Zhou
- School of Astronomy and Space Science, Nanjing University, 210023 Nanjing, Jiangsu, China
| | - R Zhou
- College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
| | - X X Zhou
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - C G Zhu
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
| | - F R Zhu
- School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
| | - H Zhu
- National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
| | - K J Zhu
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
- State Key Laboratory of Particle Detection and Electronics, 100049 Beijing, China
| | - X Zuo
- Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
- TIANFU Cosmic Ray Research Center, Chengdu, 610000 Sichuan, China
| | - X Y Huang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Abstract
Investigations that were carried out over the last two decades with novel and more sensitive instrumentation have dramatically improved our knowledge of the more violent physical processes taking place in galactic and extra-galactic Black-Holes, Neutron Stars, Supernova Remnants/Pulsar Wind Nebulae, and other regions of the Universe where relativistic acceleration processes are in place. In particular, simultaneous and/or combined observations with γ-ray satellites and ground based high-energy telescopes, have clarified the scenario of the mechanisms responsible for high energy photon emission by leptonic and hadronic accelerated particles in the presence of magnetic fields. Specifically, the European Space Agency INTEGRAL soft γ-ray observatory has detected more than 1000 sources in the soft γ-ray band, providing accurate positions, light curves and time resolved spectral data for them. Space observations with Fermi-LAT and observations that were carried out from the ground with H.E.S.S., MAGIC, VERITAS, and other telescopes sensitive in the GeV-TeV domain have, at the same time, provided evidence that a substantial fraction of the cosmic sources detected are emitting in the keV to TeV band via Synchrotron-Inverse Compton processes, in particular from stellar galactic BH systems as well as from distant black holes. In this work, employing a spatial cross correlation technique, we compare the INTEGRAL/IBIS and TeV all-sky data in search of secure or likely associations. Although this analysis is based on a subset of the INTEGRAL all-sky observations (1000 orbits), we find that there is a significant correlation: 39 objects (∼20% of the VHE γ-ray catalogue) show emission in both soft γ-ray and TeV wavebands. The full INTEGRAL database, now comprising almost 19 years of public data available, will represent an important legacy that will be useful for the Cherenkov Telescope Array (CTA) and other ground based large projects.
Collapse
|
11
|
Amenomori M, Bao YW, Bi XJ, Chen D, Chen TL, Chen WY, Chen X, Chen Y, Cui SW, Ding LK, Fang JH, Fang K, Feng CF, Feng Z, Feng ZY, Gao Q, Gou QB, Guo YQ, Guo YY, He HH, He ZT, Hibino K, Hotta N, Hu H, Hu HB, Huang J, Jia HY, Jiang L, Jin HB, Kasahara K, Katayose Y, Kato C, Kato S, Kawata K, Kihara W, Ko Y, Kozai M, Le GM, Li AF, Li HJ, Li WJ, Lin YH, Liu B, Liu C, Liu JS, Liu MY, Liu W, Lou YQ, Lu H, Meng XR, Munakata K, Nakada H, Nakamura Y, Nanjo H, Nishizawa M, Ohnishi M, Ohura T, Ozawa S, Qian XL, Qu XB, Saito T, Sakata M, Sako TK, Shao J, Shibata M, Shiomi A, Sugimoto H, Takano W, Takita M, Tan YH, Tateyama N, Torii S, Tsuchiya H, Udo S, Wang H, Wu HR, Xue L, Yamamoto Y, Yang Z, Yokoe Y, Yuan AF, Zhai LM, Zhang HM, Zhang JL, Zhang X, Zhang XY, Zhang Y, Zhang Y, Zhang Y, Zhao SP, Zhou XX. First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies. PHYSICAL REVIEW LETTERS 2021; 126:141101. [PMID: 33891464 DOI: 10.1103/physrevlett.126.141101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between 100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart from known TeV gamma-ray sources and compatible with expectations from the hadronic emission scenario in which gamma rays originate from the decay of π^{0}'s produced through the interaction of protons with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond PeV energies in our Galaxy and spread over the Galactic disk.
Collapse
Affiliation(s)
- M Amenomori
- Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan
| | - Y W Bao
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - X J Bi
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - D Chen
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - T L Chen
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - W Y Chen
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Chen
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Chen
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - S W Cui
- Department of Physics, Hebei Normal University, Shijiazhuang 050016, China
| | - L K Ding
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J H Fang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - K Fang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - C F Feng
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Zhaoyang Feng
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Z Y Feng
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - Qi Gao
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - Q B Gou
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Q Guo
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Y Guo
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H H He
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Z T He
- Department of Physics, Hebei Normal University, Shijiazhuang 050016, China
| | - K Hibino
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - N Hotta
- Faculty of Education, Utsunomiya University, Utsunomiya 321-8505, Japan
| | - Haibing Hu
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - H B Hu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J Huang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H Y Jia
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - L Jiang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H B Jin
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - K Kasahara
- Faculty of Systems Engineering, Shibaura Institute of Technology, Omiya 330-8570, Japan
| | - Y Katayose
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - C Kato
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - S Kato
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - K Kawata
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - W Kihara
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - Y Ko
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - M Kozai
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara 252-5210, Japan
| | - G M Le
- National Center for Space Weather, China Meteorological Administration, Beijing 100081, China
| | - A F Li
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
- School of Information Science and Engineering, Shandong Agriculture University, Taian 271018, China
| | - H J Li
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - W J Li
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| | - Y H Lin
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - B Liu
- Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - C Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J S Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - M Y Liu
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - W Liu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y-Q Lou
- Department of Physics and Tsinghua Centre for Astrophysics (THCA), Tsinghua University, Beijing 100084, China
- Tsinghua University-National Astronomical Observatories of China (NAOC) Joint Research Center for Astrophysics, Tsinghua University, Beijing 100084, China
- Department of Astronomy, Tsinghua University, Beijing 100084, China
| | - H Lu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X R Meng
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - K Munakata
- Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
| | - H Nakada
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Y Nakamura
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H Nanjo
- Department of Physics, Hirosaki University, Hirosaki 036-8561, Japan
| | - M Nishizawa
- National Institute of Informatics, Tokyo 101-8430, Japan
| | - M Ohnishi
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - T Ohura
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - S Ozawa
- National Institute of Information and Communications Technology, Tokyo 184-8795, Japan
| | - X L Qian
- Department of Mechanical and Electrical Engineering, Shandong Management University, Jinan 250357, China
| | - X B Qu
- College of Science, China University of Petroleum, Qingdao, 266555, China
| | - T Saito
- Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan
| | - M Sakata
- Department of Physics, Konan University, Kobe 658-8501, Japan
| | - T K Sako
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - J Shao
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - M Shibata
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - A Shiomi
- College of Industrial Technology, Nihon University, Narashino 275-8575, Japan
| | - H Sugimoto
- Shonan Institute of Technology, Fujisawa 251-8511, Japan
| | - W Takano
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - M Takita
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - Y H Tan
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - N Tateyama
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - S Torii
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - H Tsuchiya
- Japan Atomic Energy Agency, Tokai-mura 319-1195, Japan
| | - S Udo
- Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan
| | - H Wang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - H R Wu
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - L Xue
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Y Yamamoto
- Department of Physics, Konan University, Kobe 658-8501, Japan
| | - Z Yang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Y Yokoe
- Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582, Japan
| | - A F Yuan
- Physics Department of Science School, Tibet University, Lhasa 850000, China
| | - L M Zhai
- National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
| | - H M Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - J L Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X Zhang
- School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
| | - X Y Zhang
- Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
| | - Y Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210034, China
| | - Ying Zhang
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - S P Zhao
- Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - X X Zhou
- Institute of Modern Physics, SouthWest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
12
|
|
13
|
Boschini MJ, Torre SD, Gervasi M, Grandi D, Jóhannesson G, La Vacca G, Masi N, Moskalenko IV, Pensotti S, Porter TA, Quadrani L, Rancoita PG, Rozza D, Tacconi M. Inference of the Local Interstellar Spectra of Cosmic-Ray Nuclei Z ⩽ 28 with the GalProp-HelMod Framework. THE ASTROPHYSICAL JOURNAL. SUPPLEMENT SERIES 2020; 250:27. [PMID: 34711999 PMCID: PMC8549769 DOI: 10.3847/1538-4365/aba901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Composition and spectra of Galactic cosmic rays (CRs) are vital for studies of high-energy processes in a variety of environments and on different scales, for interpretation of γ-ray and microwave observations, for disentangling possible signatures of new phenomena, and for understanding of our local Galactic neighborhood. Since its launch, AMS-02 has delivered outstanding-quality measurements of the spectra of p ¯ , e ±, and nuclei: 1H-8O, 10Ne, 12Mg, 14Si. These measurements resulted in a number of breakthroughs; however, spectra of heavier nuclei and especially low-abundance nuclei are not expected until later in the mission. Meanwhile, a comparison of published AMS-02 results with earlier data from HEAO-3-C2 indicates that HEAO-3-C2 data may be affected by undocumented systematic errors. Utilizing such data to compensate for the lack of AMS-02 measurements could result in significant errors. In this paper we show that a fraction of HEAO-3-C2 data match available AMS-02 measurements quite well and can be used together with Voyager 1 and ACE-CRIS data to make predictions for the local interstellar spectra (LIS) of nuclei that are not yet released by AMS-02. We are also updating our already-published LIS to provide a complete set from 1H-28Ni in the energy range from 1 MeV nucleon-1 to ~100-500 TeV nucleon-1, thus covering 8-9 orders of magnitude in energy. Our calculations employ the GalProp-HelMod framework, which has proved to be a reliable tool in deriving the LIS of CR p ¯ , e -, and nuclei 1H-8O.
Collapse
Affiliation(s)
- M J Boschini
- INFN, Milano-Bicocca, Milano, Italy
- CINECA, Segrate, Milano, Italy
| | | | - M Gervasi
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| | - D Grandi
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| | - G Jóhannesson
- Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik, Iceland
- NORDITA, Roslagstullsbacken 23, 106 91 Stockholm, Sweden
| | - G La Vacca
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| | - N Masi
- INFN, Bologna, Italy
- Physics Department, University of Bologna, Bologna, Italy
| | - I V Moskalenko
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
| | - S Pensotti
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| | - T A Porter
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
| | - L Quadrani
- INFN, Bologna, Italy
- Physics Department, University of Bologna, Bologna, Italy
| | | | - D Rozza
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| | - M Tacconi
- INFN, Milano-Bicocca, Milano, Italy
- Physics Department, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
14
|
Abstract
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, anextensive air shower detector consisting of 300 water Cherenkov tanks located at 4100m in Puebla, Mexico, has been surveying the TeV gamma-ray sky for almost five years. HAWC can observe steady sources, variable sources, transients, which allows for probes of both astrophysical and particle physics phenomena. This includes the production and propagation of cosmic rays, studies of Lorentz invariance violation, and dark matter searches. I will discuss recent HAWC results as well as the future of the observatory.
Collapse
|
15
|
Discovery of a Spatially Extended GeV Source in the Vicinity of the TeV Halo Candidate 2HWC J1912+099: a TeV Halo or Supernova Remnant? ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab5af6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Abeysekara AU, Albert A, Alfaro R, Angeles Camacho JR, Arteaga-Velázquez JC, Arunbabu KP, Avila Rojas D, Ayala Solares HA, Baghmanyan V, Belmont-Moreno E, BenZvi SY, Brisbois C, Caballero-Mora KS, Capistrán T, Carramiñana A, Casanova S, Cotti U, Cotzomi J, Coutiño de León S, De la Fuente E, de León C, Dichiara S, Dingus BL, DuVernois MA, Díaz-Vélez JC, Ellsworth RW, Engel K, Espinoza C, Fleischhack H, Fraija N, Galván-Gámez A, Garcia D, García-González JA, Garfias F, González MM, Goodman JA, Harding JP, Hernandez S, Hinton J, Hona B, Huang D, Hueyotl-Zahuantitla F, Hüntemeyer P, Iriarte A, Jardin-Blicq A, Joshi V, Kaufmann S, Kieda D, Lara A, Lee WH, León Vargas H, Linnemann JT, Longinotti AL, Luis-Raya G, Lundeen J, López-Coto R, Malone K, Marinelli SS, Martinez O, Martinez-Castellanos I, Martínez-Castro J, Martínez-Huerta H, Matthews JA, Miranda-Romagnoli P, Morales-Soto JA, Moreno E, Mostafá M, Nayerhoda A, Nellen L, Newbold M, Nisa MU, Noriega-Papaqui R, Peisker A, Pérez-Pérez EG, Pretz J, Ren Z, Rho CD, Rivière C, Rosa-González D, Rosenberg M, Ruiz-Velasco E, Salesa Greus F, Sandoval A, Schneider M, Schoorlemmer H, Sinnis G, Smith AJ, Springer RW, Surajbali P, Tabachnick E, Tanner M, Tibolla O, Tollefson K, Torres I, Torres-Escobedo R, Villaseñor L, Weisgarber T, Wood J, Yapici T, Zhang H, Zhou H. Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC. PHYSICAL REVIEW LETTERS 2020; 124:021102. [PMID: 32004015 DOI: 10.1103/physrevlett.124.021102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Indexed: 06/10/2023]
Abstract
We present the first catalog of gamma-ray sources emitting above 56 and 100 TeV with data from the High Altitude Water Cherenkov Observatory, a wide field-of-view observatory capable of detecting gamma rays up to a few hundred TeV. Nine sources are observed above 56 TeV, all of which are likely galactic in origin. Three sources continue emitting past 100 TeV, making this the highest-energy gamma-ray source catalog to date. We report the integral flux of each of these objects. We also report spectra for three highest-energy sources and discuss the possibility that they are PeVatrons.
Collapse
Affiliation(s)
- A U Abeysekara
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - A Albert
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - R Alfaro
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - J R Angeles Camacho
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | | | - K P Arunbabu
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - D Avila Rojas
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - H A Ayala Solares
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - V Baghmanyan
- Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN, Krakow, Poland
| | - E Belmont-Moreno
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - S Y BenZvi
- Department of Physics & Astronomy, University of Rochester, Rochester, New York, USA
| | - C Brisbois
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | | | - T Capistrán
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - A Carramiñana
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - S Casanova
- Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN, Krakow, Poland
| | - U Cotti
- Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - J Cotzomi
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - S Coutiño de León
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - E De la Fuente
- Departamento de Física, Centro Universitario de Ciencias Exactase Ingenierias, Universidad de Guadalajara, Guadalajara, Mexico
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, USA
| | - C de León
- Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - S Dichiara
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - B L Dingus
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - M A DuVernois
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J C Díaz-Vélez
- Departamento de Física, Centro Universitario de Ciencias Exactase Ingenierias, Universidad de Guadalajara, Guadalajara, Mexico
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, USA
| | - R W Ellsworth
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - K Engel
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - C Espinoza
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - H Fleischhack
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA
| | - N Fraija
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - A Galván-Gámez
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - D Garcia
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - J A García-González
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - F Garfias
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - M M González
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - J A Goodman
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - J P Harding
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - S Hernandez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - J Hinton
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - B Hona
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA
| | - D Huang
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA
| | | | - P Hüntemeyer
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA
| | - A Iriarte
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - A Jardin-Blicq
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - V Joshi
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S Kaufmann
- Universidad Politecnica de Pachuca, Pachuca, Hgo, Mexico
| | - D Kieda
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - A Lara
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - W H Lee
- Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - H León Vargas
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - J T Linnemann
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - A L Longinotti
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - G Luis-Raya
- Universidad Politecnica de Pachuca, Pachuca, Hgo, Mexico
| | - J Lundeen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - R López-Coto
- INFN and Universita di Padova, via Marzolo 8, Padova, Italy
| | - K Malone
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - S S Marinelli
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - O Martinez
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - J Martínez-Castro
- Centro de Investigación en Computación, Instituto Politécnico Nacional, México City, México
| | - H Martínez-Huerta
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil
| | - J A Matthews
- Dept of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - J A Morales-Soto
- Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - E Moreno
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - M Mostafá
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - A Nayerhoda
- Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN, Krakow, Poland
| | - L Nellen
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - M Newbold
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - M U Nisa
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | | | - A Peisker
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | | | - J Pretz
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Z Ren
- Dept of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
| | - C D Rho
- Department of Physics & Astronomy, University of Rochester, Rochester, New York, USA
| | - C Rivière
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - D Rosa-González
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - M Rosenberg
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - E Ruiz-Velasco
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - F Salesa Greus
- Institute of Nuclear Physics Polish Academy of Sciences, IFJ-PAN, Krakow, Poland
| | - A Sandoval
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - M Schneider
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - H Schoorlemmer
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - G Sinnis
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A J Smith
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - R W Springer
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
| | - P Surajbali
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - E Tabachnick
- Department of Physics, University of Maryland, College Park, Maryland, USA
| | - M Tanner
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - O Tibolla
- Universidad Politecnica de Pachuca, Pachuca, Hgo, Mexico
| | - K Tollefson
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
| | - I Torres
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - R Torres-Escobedo
- Departamento de Física, Centro Universitario de Ciencias Exactase Ingenierias, Universidad de Guadalajara, Guadalajara, Mexico
- Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas, USA
| | - L Villaseñor
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - T Weisgarber
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J Wood
- NASA Marshall Space Flight Center, Hunstville, Alabama, USA
| | - T Yapici
- Department of Physics & Astronomy, University of Rochester, Rochester, New York, USA
| | - H Zhang
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana, USA
| | - H Zhou
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
17
|
Constraints to Dark Matter Annihilation from High-Latitude HAWC Unidentified Sources. GALAXIES 2019. [DOI: 10.3390/galaxies8010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Λ CDM cosmological framework predicts the existence of thousands of subhalos in our own Galaxy not massive enough to retain baryons and become visible. Yet, some of them may outshine in gamma rays provided that the dark matter is made of weakly interacting massive particles (WIMPs), which would self-annihilate and would appear as unidentified gamma-ray sources (unIDs) in gamma-ray catalogs. Indeed, unIDs have proven to be competitive targets for dark matter searches with gamma rays. In this work, we focus on the three high-latitude ( | b | ≥ 10 ) sources present in the 2HWC catalog of the High Altitude Water Cherenkov (HAWC) observatory with no clear associations at other wavelengths. Indeed, only one of these sources, 2HWC J1040+308, is found to be above the HAWC detection threshold when considering 760 days of data, i.e., a factor 1.5 more exposure time than in the original 2HWC catalog. Other gamma-ray instruments, such as Fermi-LAT or VERITAS at lower energies, do not detect the source. Also, this unID is reported as spatially extended, making it even more interesting in a dark matter search context. While waiting for more data that may shed further light on the nature of this source, we set competitive upper limits on the annihilation cross section by comparing this HAWC unID to expectations based on state-of-the-art N-body cosmological simulations of the Galactic subhalo population. We find these constraints to be particularly competitive for heavy WIMPs, i.e., masses above ∼25 (40) TeV in the case of the b b ¯ ( τ + τ − ) annihilation channel, reaching velocity-averaged cross section values of 2 × 10 − 25 ( 5 × 10 − 25 ) cm 3 ·s − 1 . Although far from testing the thermal relic cross section value, the obtained limits are independent and nicely complementary to those from radically different DM analyses and targets, demonstrating once again the high potential of this DM search approach.
Collapse
|
18
|
Porter TA, Jóhannesson G, Moskalenko IV. Deciphering Residual Emissions: Time-dependent Models for the Nonthermal Interstellar Radiation from the Milky Way. THE ASTROPHYSICAL JOURNAL 2019; 887:250. [PMID: 34646047 PMCID: PMC8506935 DOI: 10.3847/1538-4357/ab5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cosmic rays (CRs) in the Galaxy are an important dynamical component of the interstellar medium (ISM) that interact with the other major components (interstellar gas and magnetic and radiation fields) to produce broadband interstellar emissions that span the electromagnetic spectrum. The standard modeling of CR propagation and production of the associated emissions is based on a steady-state assumption, where the CR source spatial density is described using a smoothly varying function of position that does not evolve with time. While this is a convenient approximation, reality is otherwise, where primary CRs are produced in and about highly localized regions, e.g., supernova remnants, which have finite lifetimes. In this paper, we use the latest version of the galprop CR propagation code to model time-dependent CR injection and propagation through the ISM from a realistic 3D discretized CR source density distribution, together with full 3D models for the other major ISM components, and make predictions of the associated broadband nonthermal emissions. We compare the predictions for the discretized and equivalent steady-state model, finding that the former predicts novel features in the broadband nonthermal emissions that are absent for the steady-state case. Some of the features predicted by the discretized model may be observable in all-sky observations made by WMAP and Planck, the recently launched eROSITA, the Fermi-LAT, and ground-based observations by HESS, HAWC, and the forthcoming CTA. The nonthermal emissions predicted by the discretized model may also provide explanations of puzzling anomalies in high-energy γ-ray data, such as the Fermi-LAT north/south asymmetry and residuals like the so-called "Fermi bubbles."
Collapse
Affiliation(s)
- T A Porter
- W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
| | - G Jóhannesson
- Science Institute, University of Iceland, IS-107 Reykjavik, Iceland
- AlbaNova Univ. Center Nordita, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
| | - I V Moskalenko
- W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
|
20
|
GeV Observations of the Extended Pulsar Wind Nebulae Constrain the Pulsar Interpretations of the Cosmic-Ray Positron Excess. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab20c9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Abstract
VERITAS has just completed its 11th year of full four-telescope scientific operations and continues to function with excellent efficiency. Its science program, encompassing galactic, extragalactic, and fundamental physics, entails dedicated observations of specific targets as well as multi-messenger target-of-opportunity observations. The current operational status of VERITAS is presented, as well as recent science highlights, and the future plans for the observatory are discussed.
Collapse
|
22
|
Abstract
For the understanding of the variable, transient and non-thermal universe, unbiased long-term monitoring is crucial. To constrain the emission mechanisms at the highest energies, it is important to characterize the very high energy emission and its correlation with observations at other wavelengths. At very high energies, only a limited number of instruments is available. This article reviews the current status of monitoring of the extra-galactic sky at TeV energies.
Collapse
|
23
|
Abstract
Flux distribution is an important tool to understand the variability processes in active galactic nuclei. We now have available a great deal of observational evidences pointing towards the presence of log-normal components in the high energy light curves, and different models have been proposed to explain these data. Here, we collect some of the recent developments on this topic using the well-known blazar Mrk 501 as example of complex and interesting aspects coming from its flux distribution in different energy ranges and at different timescales. The observational data we refer to are those collected in a complementary manner by Fermi-LAT over multiple years, and by the First G-APD Cherenkov Telescope (FACT) telescope and the H.E.S.S. array in correspondence of the bright flare of June 2014.
Collapse
|
24
|
Very-high-energy particle acceleration powered by the jets of the microquasar SS 433. Nature 2018; 562:82-85. [DOI: 10.1038/s41586-018-0565-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022]
|
25
|
Two-zone Diffusion of Electrons and Positrons from Geminga Explains the Positron Anomaly. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aad092] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
|
27
|
Cholis I, Karwal T, Kamionkowski M. Features in the spectrum of cosmic-ray positrons from pulsars. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.97.123011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Linden T, Buckman BJ. Pulsar TeV Halos Explain the Diffuse TeV Excess Observed by Milagro. PHYSICAL REVIEW LETTERS 2018; 120:121101. [PMID: 29694103 DOI: 10.1103/physrevlett.120.121101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Milagro observations have found bright, diffuse TeV emission concentrated along the galactic plane of the Milky Way. The intensity and spectrum of this emission is difficult to explain with current models of hadronic γ-ray production, and has been named the "TeV excess." We show that TeV emission from pulsars naturally explains this excess. Recent observations have detected "TeV halos" surrounding pulsars that are either nearby or particularly luminous. Extrapolating this emission to the full population of Milky Way pulsars indicates that the ensemble of "subthreshold" sources necessarily produces bright TeV emission diffusively along the Milky Way plane. Models indicate that the TeV halo γ-ray flux exceeds that from hadronic γ rays above an energy of ∼500 GeV. Moreover, the spectrum and intensity of TeV halo emission naturally matches the TeV excess. Finally, we show that upcoming HAWC observations will resolve a significant fraction of the TeV excess into individual TeV halos, conclusively confirming, or ruling out, this model.
Collapse
Affiliation(s)
- Tim Linden
- Center for Cosmology and AstroParticle Physics (CCAPP), and Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Benjamin J Buckman
- Center for Cosmology and AstroParticle Physics (CCAPP), and Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|