1
|
Ranieri U, Di Cataldo S, Rescigno M, Monacelli L, Gaal R, Santoro M, Andriambariarijaona L, Parisiades P, De Michele C, Bove LE. Observation of the most H 2-dense filled ice under high pressure. Proc Natl Acad Sci U S A 2023; 120:e2312665120. [PMID: 38109537 PMCID: PMC10756306 DOI: 10.1073/pnas.2312665120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/20/2023] Open
Abstract
Hydrogen hydrates are among the basic constituents of our solar system's outer planets, some of their moons, as well Neptune-like exo-planets. The details of their high-pressure phases and their thermodynamic conditions of formation and stability are fundamental information for establishing the presence of hydrogen hydrates in the interior of those celestial bodies, for example, against the presence of the pure components (water ice and molecular hydrogen). Here, we report a synthesis path and experimental observation, by X-ray diffraction and Raman spectroscopy measurements, of the most H[Formula: see text]-dense phase of hydrogen hydrate so far reported, namely the compound 3 (or C[Formula: see text]). The detailed characterisation of this hydrogen-filled ice, based on the crystal structure of cubic ice I (ice I[Formula: see text]), is performed by comparing the experimental observations with first-principles calculations based on density functional theory and the stochastic self-consistent harmonic approximation. We observe that the extreme (up to 90 GPa and likely beyond) pressure stability of this hydrate phase is due to the close-packed geometry of the hydrogen molecules caged in the ice I[Formula: see text] skeleton.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Dipartimento di Fisica, Sapienza Università di Roma, 00185Roma, Italy
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FDEdinburgh, United Kingdom
| | - Simone Di Cataldo
- Dipartimento di Fisica, Sapienza Università di Roma, 00185Roma, Italy
- Institut für Festkörperphysik, Technische Universität Wien, 1040Wien, Austria
| | - Maria Rescigno
- Dipartimento di Fisica, Sapienza Università di Roma, 00185Roma, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015Lausanne, Switzerland
| | - Lorenzo Monacelli
- Theory and Simulation of Materials, and National Centre for Computational Design and Discovery of Novel Materials, École Polytechnique Fédérale de Lausanne, 1015Lausanne, Switzerland
| | - Richard Gaal
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015Lausanne, Switzerland
| | - Mario Santoro
- Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, CNR-INO, Sesto Fiorentino, 50019, Italy
- European Laboratory for Nonlinear Spectroscopy, LENS, Sesto Fiorentino (FI), 50019, Italy
| | - Leon Andriambariarijaona
- Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75252Paris, France
| | - Paraskevas Parisiades
- Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75252Paris, France
| | | | - Livia Eleonora Bove
- Dipartimento di Fisica, Sapienza Università di Roma, 00185Roma, Italy
- Laboratory of Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015Lausanne, Switzerland
- Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75252Paris, France
| |
Collapse
|
2
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
3
|
Roberts JH, McKinnon WB, Elder CM, Tobie G, Biersteker JB, Young D, Park RS, Steinbrügge G, Nimmo F, Howell SM, Castillo-Rogez JC, Cable ML, Abrahams JN, Bland MT, Chivers C, Cochrane CJ, Dombard AJ, Ernst C, Genova A, Gerekos C, Glein C, Harris CD, Hay HCFC, Hayne PO, Hedman M, Hussmann H, Jia X, Khurana K, Kiefer WS, Kirk R, Kivelson M, Lawrence J, Leonard EJ, Lunine JI, Mazarico E, McCord TB, McEwen A, Paty C, Quick LC, Raymond CA, Retherford KD, Roth L, Rymer A, Saur J, Scanlan K, Schroeder DM, Senske DA, Shao W, Soderlund K, Spiers E, Styczinski MJ, Tortora P, Vance SD, Villarreal MN, Weiss BP, Westlake JH, Withers P, Wolfenbarger N, Buratti B, Korth H, Pappalardo RT. Exploring the Interior of Europa with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:46. [PMID: 37636325 PMCID: PMC10457249 DOI: 10.1007/s11214-023-00990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.
Collapse
Affiliation(s)
| | | | - Catherine M Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Ryan S Park
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Samuel M Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Corey J Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Carolyn Ernst
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | | | - Hamish C F C Hay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Paul O Hayne
- University of Colorado Boulder, Boulder, CO, USA
| | | | - Hauke Hussmann
- German Aerospace Center Institute of Planetary Research, Berlin, Germany
| | | | | | - Walter S Kiefer
- Lunar and Planetary Institute, University Space Research Association, Houston, TX, USA
| | | | | | | | - Erin J Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Retherford
- Sapienza University of Rome, Rome, Italy
- University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorenz Roth
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Abigail Rymer
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - David A Senske
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wencheng Shao
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Marshall J Styczinski
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- University of Washington, Seattle, WA, USA
| | - Paolo Tortora
- Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Steven D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | - Bonnie Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Haje Korth
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Robert T Pappalardo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
4
|
Abstract
Ground-based telescopes and space exploration have provided outstanding observations of the complexity of icy planetary surfaces. This work presents our review of the varying nature of carbon dioxide (CO2) and carbon monoxide (CO) ices from the cold traps on the Moon to Pluto in the Kuiper Belt. This review is organized into five parts. First, we review the mineral physics (e.g., rheology) relevant to these environments. Next, we review the radiation-induced chemical processes and the current interpretation of spectral signatures. The third section discusses the nature and distribution of CO2 in the giant planetary systems of Jupiter and Saturn, which are much better understood than the satellites of Uranus and Neptune, discussed in the subsequent section. The final sections focus on Pluto in comparison to Triton, having mainly CO, and a brief overview of cometary materials. We find that CO2 ices exist on many of these icy bodies by way of magnetospheric influence, while intermixing into solid ices with CH4 (methane) and N2 (nitrogen) out to Triton and Pluto. Such radiative mechanisms or intermixing can provide a wide diversity of icy surfaces, though we conclude where further experimental research of these ices is still needed.
Collapse
|
5
|
Yanes-Rodríguez R, Prosmiti R. Assessment of DFT approaches in noble gas clathrate-like clusters: stability and thermodynamics. Phys Chem Chem Phys 2021; 24:1475-1485. [PMID: 34935011 DOI: 10.1039/d1cp04935f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have assessed the performance and accuracy of different wavefunction-based electronic structure methods, such as DFMP2 and domain-based local pair-natural orbital (DLPNO-CCSD(T)), as well as a variety of density functional theory (DFT) approaches on He@(H2O)N cage systems. We have selected representative clathrate-like structures corresponding to the building blocks present in each of the sI, sII and sH natural gas clathrate hydrates, and we have carefully studied the interaction between a He atom with each of their individual cages. We reported well-converged DFMP2 and DLPNO-CCSD(T) reference data, together with interaction and cohesive energies of four different density functionals (two GGA, revPBE and PW86PBE, and two hybrids, B3LYP and PBE0), including diverse dispersion correction schemes (D3(0), D3(BJ), D4 and XDM) for both He-filled and empty clathrate-like cages. After the analysis of the results, we came to the conclusion that the PW86PBE functional, with both XDM and D4 corrections, and the PBE0-D4 functional present reasonably adequate approaches to describe the guest-host noncovalent interactions that take place in such He clathrate hydrates. Taking into account that the He@sII is the only helium clathrate that scientists have been able to synthesize recently, we have performed a thermodynamic study on the individual 512 and 51264 cages present in the sII crystal. We determined the change in enthalpy, ΔH, and in Gibbs free energy, ΔG, at various temperatures and pressures, and we found out that in the range of experimental conditions the reactions associated with the encapsulation of the He atom inside the cages are exothermic and spontaneous. Finally, we highlighted the importance of an accurate description of the interaction in He@water mixtures, as a crucial component in construction of reliable data-driven models.
Collapse
Affiliation(s)
- Raquel Yanes-Rodríguez
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain. .,Doctoral Programme in Theoretical Chemistry and Computational Modelling, Doctoral School, Universidad Autónoma de Madrid, Spain
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
6
|
Melwani Daswani M, Vance SD, Mayne MJ, Glein CR. A Metamorphic Origin for Europa's Ocean. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL094143. [PMID: 35865189 PMCID: PMC9286408 DOI: 10.1029/2021gl094143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 05/28/2023]
Abstract
Europa likely contains an iron-rich metal core. For it to have formed, temperatures within Europa reached ≳ 1250 K. Going up to that temperature, accreted chondritic minerals - for example, carbonates and phyllosilicates - would partially devolatilize. Here, we compute the amounts and compositions of exsolved volatiles. We find that volatiles released from the interior would have carried solutes, redox-sensitive species, and could have generated a carbonic ocean in excess of Europa's present-day hydrosphere, and potentially an early CO 2 atmosphere. No late delivery of cometary water was necessary. Contrasting with prior work, CO 2 could be the most abundant solute in the ocean, followed by Ca 2 + , SO 4 2 - , and HCO 3 - . However, gypsum precipitation going from the seafloor to the ice shell decreases the dissolved S/Cl ratio, such that Cl > S at the shallowest depths, consistent with recently inferred endogenous chlorides at Europa's surface. Gypsum would form a 3-10 km thick sedimentary layer at the seafloor.
Collapse
Affiliation(s)
| | - Steven D. Vance
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Matthew J. Mayne
- Department of Earth SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Christopher R. Glein
- Space Science and Engineering DivisionSouthwest Research InstituteSan AntonioTXUSA
| |
Collapse
|